#特征提取
ese_vovnet19b_dw.ra_in1k - VoVNet-v2轻量级图像分类模型 兼顾性能与能效
模型VoVNet开源项目Huggingface图像分类特征提取ImageNetGithubtimm
ese_vovnet19b_dw.ra_in1k是基于VoVNet-v2架构的图像分类模型,在ImageNet-1k数据集上使用RandAugment技术预训练。该模型参数量为6.5M,计算量为1.3 GMACs,适用于多种图像分类任务。除了高效的分类功能,它还可作为特征提取骨干网络,支持特征图提取和图像嵌入。模型在保持高性能的同时,优化了能耗和GPU计算效率,是一个兼顾性能与效率的轻量级选择。
eca_halonext26ts.c1_in1k - 基于ResNeXt架构的HaloNet图像分类模型
模型图像分类GithubtimmImageNet-1kHaloNet特征提取开源项目Huggingface
eca_halonext26ts.c1_in1k是一种基于ResNeXt架构的HaloNet图像分类模型,采用高效通道注意力机制。该模型在timm库中使用ImageNet-1k数据集训练,参数量为10.8M,GMACs为2.4,适用于256x256图像。它结合了ResNet Strikes Back的训练方法和局部自注意力机制,可用于图像分类、特征图提取和图像嵌入等任务。通过灵活的BYOB架构,该模型在保持计算效率的同时提供了良好的性能和可定制性。
inception_resnet_v2.tf_in1k - Inception-ResNet-v2架构的图像分类与特征提取模型
inception_resnet_v2模型图像分类GithubtimmImageNet-1k特征提取开源项目Huggingface
inception_resnet_v2.tf_in1k是基于Inception-ResNet-v2架构的图像分类模型,在ImageNet-1k数据集上训练。模型拥有5580万参数,13.2 GMACs计算量,适用于299x299像素的输入图像。除图像分类外,该模型还支持特征图提取和图像嵌入功能。它在保持较低计算复杂度的同时提供高精度图像识别能力,适用于多种计算机视觉任务。
res2next50.in1k - 基于Res2Net架构的高效多尺度图像分类模型
特征提取Huggingface图像分类模型深度学习timmGithub开源项目ResNet
res2next50.in1k是基于Res2Net架构的图像分类模型,在ImageNet-1k数据集上训练。该模型采用多尺度ResNet结构,参数量为2470万,计算复杂度为4.2 GMACs。它不仅可用于图像分类,还支持特征图提取和图像嵌入等任务。res2next50.in1k在性能和灵活性方面表现出色,适用于广泛的计算机视觉应用。研究人员可通过timm库便捷地使用和评估此模型。
mobilevit_xs.cvnets_in1k - MobileViT 轻量级通用移动友好的视觉Transformer
特征提取Huggingface图像分类MobileViT模型timmGithub开源项目ImageNet-1k
MobileViT是一种轻量级视觉Transformer模型,专为移动设备设计。mobilevit_xs.cvnets_in1k版本在ImageNet-1k数据集上训练,仅有2.3M参数和1.1 GMACs计算量。该模型适用于图像分类、特征提取和嵌入生成等任务,平衡了性能和资源消耗。它融合了MobileNet的轻量化结构和Vision Transformer的强大特性,为资源受限环境提供了高效解决方案。
swin_tiny_patch4_window7_224.ms_in1k - Swin Transformer: 基于移位窗口的层级视觉模型
ImageNet模型图像分类Swin TransformerGithubtimm特征提取开源项目Huggingface
swin_tiny_patch4_window7_224.ms_in1k是一个基于Swin Transformer架构的图像分类模型,在ImageNet-1k数据集上预训练。该模型包含2830万参数,支持224x224像素输入,可用于图像分类和特征提取。它采用分层视觉Transformer结构和移位窗口技术,提高了效率和性能。研究者可通过timm库便捷地使用此模型进行推理或进一步训练,适用于各种计算机视觉任务。
swin_large_patch4_window7_224.ms_in22k_ft_in1k - 分层视觉Transformer模型 基于ImageNet-22k预训练和ImageNet-1k微调
特征提取Huggingface图像分类模型timmImageNetGithub开源项目Swin Transformer
swin_large_patch4_window7_224.ms_in22k_ft_in1k是基于Swin Transformer架构的图像分类模型。该模型在ImageNet-22k上预训练,ImageNet-1k上微调,拥有1.965亿参数,34.5 GMACs计算量。它支持224x224输入图像,适用于图像分类、特征提取和图像嵌入。模型采用分层结构和移位窗口机制,平衡了计算效率和性能。
inception_v3.gluon_in1k - Inception-v3架构的图像分类与特征提取模型
模型开源项目HuggingfaceInception-v3图像分类ImageNet特征提取Githubtimm
该模型基于Inception-v3架构,在ImageNet-1k数据集上训练,拥有2380万参数,支持299x299图像输入。除图像分类外,还可用于特征图提取和图像嵌入。通过timm库,研究者和开发者可轻松应用此预训练模型于各类计算机视觉任务。模型由MxNet GLUON团队开发,为图像处理领域提供了强大工具。
ember-v1 - 多任务自然语言处理基准测试模型
模型开源项目Huggingface特征提取transformerssentence-transformersGithubMTEB句子相似度
ember-v1是一个在MTEB基准测试中表现出色的自然语言处理模型。该模型在分类、检索、聚类和语义相似度等多种NLP任务中取得了显著成果。在Amazon评论分类和问答检索等实际应用场景中,ember-v1展现出优异性能。这个多功能模型为文本分析和信息检索提供了有力支持,是研究人员和开发者的实用NLP工具。
mobilenetv3_small_075.lamb_in1k - 移动网络V3小型模型的图像分类与优化方法
特征提取开源项目模型timmGithubHuggingfaceMobileNet-v3ImageNet-1k图像分类
该项目采用MobileNet-v3模型进行图像分类,在ImageNet-1k数据集上通过LAMB优化器和RMSProp优化器进行微调。利用指数衰减学习率调度和EMA权重平均,提高性能表现。模型在特征提取和图像嵌入方面表现出色,适合开发轻量级视觉识别应用。
superpoint - 自监督模型SuperPoint提高多视图几何问题的兴趣点检测和描述
Github开源项目特征提取图像匹配计算机视觉自监督学习HuggingfaceSuperPoint模型
SuperPoint是一种通过自监督学习进行兴趣点检测与描述的模型,主要用于多视图几何问题。利用全卷积网络,该模型能检测不同图像中的关键点并生成对应的描述符,可应用于单应性估计和图像匹配任务。借助同形变换自适应技术,SuperPoint在MS-COCO数据集上的训练表现优越,能够识别更多兴趣点,显著提升了单应性估计精度。
bert-base-portuguese-cased-nli-assin-2 - 提升句子相似度与语义搜索的句子转换器
模型训练Huggingfacesentence-transformersGithub开源项目语义搜索模型特征提取句向量
模型将句子和段落转换为768维向量,用于聚类和语义搜索等任务。可通过安装sentence-transformers库或直接调用HuggingFace Transformers进行操作。采用SoftmaxLoss训练,并通过EmbeddingSimilarityEvaluator评估,结合BertModel与句子池化实现高效转换。
quora-distilbert-multilingual - 跨语言句子嵌入与语义搜索解决方案
句子相似性Githubsentence-transformers开源项目特征提取Huggingface语义搜索DistilBert模型
quora-distilbert-multilingual是一款依托sentence-transformers框架的模型,可将句子和段落转换为768维的向量,从而助力于句子聚类和语义搜索。用户可以选择使用sentence-transformers库简便地安装和使用,也可利用HuggingFace Transformers手动实现句子嵌入。该模型在Sentence Embeddings Benchmark测试中表现优异,模型结构包含DistilBert变换器和平均池化操作,为句子提供高效的表示能力。
camembert-L4 - 精简版法语BERT模型,支持文本分类和语义搜索
Huggingface特征提取开源项目模型CamemBERT-L4Github语义搜索语言模型文本分类
CamemBERT-L4是CamemBERT模型的精简版本,通过裁剪顶部层次来提高性能。适合在文本分类、抽取式问答、语义搜索等领域进行微调,用于决策的完整句子任务,而非文本生成。支持掩码语言建模(MLM)与文本特征提取,模型参数和大小均有减少,提升了处理效率,同时保持其重要功能。
indo-sentence-bert-base - 印尼语句子相似度计算与嵌入的优化解决方案
同志句子BERT特征提取transformers库训练参数开源项目模型Github句子相似性Huggingface
indo-sentence-bert-base提供印尼语的文本相似度计算和语义搜索功能,通过高维向量实现精准句子比较,适用于集群分析和语义检索,支持HuggingFace和Sentence-Transformers库,具备高效的训练和评估机制。
deepset-mxbai-embed-de-large-v1 - 高性能德语句子嵌入模型
模型嵌入模型变换器模型Githubsentence-transformers特征提取开源项目Huggingface自然语言处理
deepset-mxbai-embed-de-large-v1是一个专为德语开发的句子嵌入模型。该模型基于Sentence Transformers技术,可将德语文本转换为向量表示。在语义相似度和文本分类等任务中表现优异,为德语自然语言处理应用奠定基础。支持高效特征提取,适用于多种下游任务。
robbert-2022-dutch-sentence-transformers - RobBERT模型改进的句子相似度与特征提取工具
特征提取荷兰开源项目sentence-transformersGithub模型Huggingface句子相似性语义搜索
该项目基于KU Leuven开发的RobBERT模型,提供句子相似度与特征提取功能,支持语义搜索和文本聚类等应用场景。通过翻译和微调多种Dutch语料库,模型在荷兰语环境中表现良好。用户可以通过安装sentence-transformers或使用HuggingFace Transformers来实现模型的使用,主要功能包括将句子和段落转换为768维度密集向量,为文本分析提供准确的句子嵌入。项目中使用的数据加载与优化策略有效提升了整体性能。
jina-embeddings-v2-base-es - 双语智能文本嵌入模型 英语和西班牙语文本向量化解决方案
特征提取开源项目sentence-transformers模型文本相似度机器学习Github自然语言处理Huggingface
这是一款针对英语和西班牙语优化的文本嵌入模型。在MTEB基准测试中表现优异,可高效处理文本分类、检索和聚类等任务。模型支持跨语言文本相似度计算,适用于双语内容处理场景。基于sentence-transformers框架开发,具备出色的文本特征提取能力。
gte-small - 基于ONNX权重的Transformers.js模型嵌入及余弦相似度计算
Github开源项目特征提取相似度计算JavaScriptHuggingfaceTransformers.jsONNX模型
本项目介绍了使用ONNX权重与Transformers.js库计算模型嵌入和余弦相似度的过程。通过安装Transformers.js库,可以轻松地创建特征提取管道,并进行句子嵌入和相似度计算。项目默认采用8位量化模型,同时支持全精度版本。ONNX模型为未来的WebML应用做好了准备,建议通过Optimum工具进行ONNX格式转换以实现网络兼容。
convnext_base.fb_in22k_ft_in1k_384 - 高效的ConvNeXt图像分类解决方案
图像分类Huggingface特征提取开源项目模型GithubImageNetConvNeXt模型对比
ConvNeXt图像分类模型经过ImageNet-22k的预训练和ImageNet-1k的微调,以384x384分辨率高效执行分类任务。拥有88.6M参数和45.2 GMACs,支持图像分类、特征提取和图像嵌入等功能。适用于多种机器学习任务,其高分辨率处理能力使其在深度学习领域具有良好表现。
sbert-all-MiniLM-L6-with-pooler - 基于MiniLM的384维句子向量化模型
ONNX特征提取Github向量嵌入语义搜索Huggingface开源项目模型sentence-transformers
sbert-all-MiniLM-L6-with-pooler基于sentence-transformers框架开发,将文本映射为384维向量表示。该模型在10亿对句子数据集上完成训练,可应用于文本聚类和语义搜索等场景。模型通过Hugging Face Optimum实现,支持便捷的特征提取功能。
regnety_120.sw_in12k_ft_in1k - 高级图像分类模型,优化大规模数据集的性能
预训练图像分类RegNetY开源项目模型Huggingface特征提取数据集Github
RegNetY-12GF模型致力于图像分类,先在ImageNet-12k上预训练,再在ImageNet-1k上微调。其结构支持多项增强功能,如随机深度和梯度检查点,提高模型准确性和效率。基于timm库实现,广泛用于特征图提取和图像嵌入,适用于多种图像处理场景。
convnext_small.fb_in22k_ft_in1k_384 - ConvNeXt模型提升图像分类精度的预训练与微调方案
特征提取ImageNet模型比较模型Github开源项目图像分类ConvNeXtHuggingface
ConvNeXt是一款用于图像分类的模型,于ImageNet-22k数据集预训练,并在ImageNet-1k上微调。该模型拥有50.2百万参数和25.6 GMACs,支持384x384尺寸的图像处理。除了图像分类外,它还支持特征图和图像嵌入提取。凭借其优异的性能和高效的图像处理能力,ConvNeXt被广泛应用于复杂的图像识别任务。通过timm库可实现模型便捷的加载与应用,适用于各种研究与工程需求。
IgBert - 专注抗体序列分析的预训练语言模型
抗体序列IgBert模型特征提取Github蛋白质语言模型机器学习开源项目Huggingface
IgBert是一个基于大规模抗体序列数据训练的语言模型,通过Observed Antibody Space数据集优化,主要用于分析抗体序列结构。该模型可同时处理抗体的重链和轻链序列,支持批量分析,并能生成序列特征表示。模型集成了序列处理工具,可用于多种抗体序列分析应用场景。
convnextv2_large.fcmae - 用于图像特征提取的自监督卷积模型
图像分类ConvNeXt-V2ImageNet-1k自监督学习HuggingfaceGithub开源项目模型特征提取
ConvNeXt-V2是一种运用全卷积掩码自动编码器框架进行预训练的自监督特征表示模型,适用于微调和特征提取。模型适用于图像分类、特征图提取和图像嵌入,具备较高的参数和计算效率,可在ImageNet-1k等大规模数据集上展现出色表现。通过timm库加载,模型提供了处理多种图像任务的灵活性与精确度,是计算机视觉领域的重要工具。
mobilevitv2_075.cvnets_in1k - MobileViT-v2:高效的移动视觉变换器图像分类解决方案
MobileViT-v2图像分类ImageNet-1kSeparable Self-attentionHuggingfaceGithub开源项目模型特征提取
MobileViT-v2是一个高效的移动视觉变换器模型,利用分离自注意力机制优化了图像分类与特征提取。经过ImageNet-1k数据集训练,该模型适配多种计算机视觉任务。模型规格包括2.9M参数和1.1 GMAC,支持256x256图像输入。借助timm库,模型可轻松集成至移动设备的视觉处理应用中。
gte-tiny - 轻量级句向量模型实现文本相似度检索和语义匹配
Githubsentence-transformers句子相似度特征提取开源项目自然语言处理Huggingface机器学习模型
gte-tiny是一个轻量级句向量模型,用于文本相似度计算和语义匹配。模型在MTEB基准测试的文本分类、检索和聚类任务中取得良好效果,适用于各类文本处理应用场景。
regnety_320.seer - RegNetY-32GF模型:自监督学习优化的图像特征提取工具
Github开源项目特征提取图像分类RegNetY自监督学习SwAVHuggingface模型
RegNetY-32GF模型经过SEER自监督学习预训练,具备卓越图像特征提取能力。其增强功能如随机深度和梯度检查点等,有助于优化处理大规模数据集。支持多种配置和预激活瓶颈块,适合多样化深度学习应用。
densenet121.ra_in1k - 基于RandAugment优化的DenseNet图像分类预训练模型
ImageNet图像分类开源项目模型Huggingface特征提取深度学习DenseNetGithub
DenseNet121是一个在ImageNet-1k数据集上预训练的图像分类模型,采用RandAugment数据增强策略优化。模型参数量为800万,支持多种输入分辨率,可用于图像分类、特征提取和embedding生成等计算机视觉任务。
mobilenetv3_small_050.lamb_in1k - 探索资源有效利用的MobileNet-v3图像分类模型
图像分类Github开源项目timm模型Huggingface特征提取ImageNet-1kMobileNet-v3
该项目展示了在ImageNet-1k上训练的MobileNet-v3图像分类模型,强调其在资源受限环境中的适用性。使用LAMB优化器和EMA权重平均化,该模型参照ResNet Strikes Back设计,通过简化预处理流程,支持图像分类、特征提取和图像嵌入等多种深度学习任务,增强模型性能。
ese_vovnet39b.ra_in1k - 高效实时的VoVNet-v2图像分类解决方案
图像分类Github开源项目timm模型VoVNet-v2Huggingface特征提取ImageNet-1k
VoVNet-v2是一种预训练于ImageNet-1k的图像分类模型,含高效计算和低能耗优点,并采用RandAugment优化。适用于特征骨干网络,支持图像分类、特征提取和图像嵌入。其关键性能包括24.6M参数、7.1 GMACs等。通过`timm`库,用户可以实现高效的图像分类和特征提取。模型使用ResNet Strikes Back的训练方案,提高了准确度和应用多样性。
mmlw-roberta-large - 增强自然语言处理适用性的多任务学习模型
文本分类开源项目聚类模型Huggingface特征提取sentence-transformers句子相似度Github
该开源项目mmlw-roberta-large通过多任务学习提高了自然语言处理性能,尤其在句子相似性、分类和检索等任务上表现突出。模型适用于多种数据集,如MTEB AllegroReviews和MTEB ArguAna-PL,实现了较高的准确率和F1值。使用了sentence-transformers和transformers技术,确保在大规模数据集上的优异表现。
vgg19.tv_in1k - VGG19深度卷积网络在ImageNet数据集上的图像分类与特征提取
图像分类Github开源项目模型Huggingface特征提取深度卷积网络VGGImageNet-1k
针对图像识别任务,VGG19模型在ImageNet-1k数据集上采用原始的torchvision权重训练,支持224x224像素的输入图像。其140M+参数配置使得模型能够处理复杂的图像特征,包括分类、特征提取和嵌入应用,只需适用模型提供的转换配置即可实现高效部署。
resnet101.tv_in1k - 采用ResNet101架构的高效图像分类和特征提取模型
ImageNet图像分类开源项目模型resnet101.tv_in1kHuggingface特征提取深度学习Github
resnet101.tv_in1k是一个基于ResNet101架构的图像分类模型,搭载ReLU激活、单层7x7卷积池化和1x1卷积下采样等特性,经过ImageNet-1k数据集训练,可用于图像特征提取和分类。在深度残差学习的加持下,该模型在特征提取和分类任务中表现突出,适合用于学术研究和商用产品开发。
vit_base_patch16_224.orig_in21k - Vision Transformer图像特征提取模型无分类头版本
timm图像分类Huggingface特征提取开源项目模型预训练模型GithubVision Transformer
vit_base_patch16_224.orig_in21k是一个基于Vision Transformer架构的图像特征提取模型,在ImageNet-21k数据集上预训练。模型采用16x16图像块处理,支持224x224输入尺寸,包含8580万参数。移除分类头设计使其专注于特征提取,适合迁移学习和微调。通过timm库可轻松应用于图像分类和特征提取任务,为计算机视觉研究提供有力支持。
unsup-simcse-bert-base-uncased - 无监督对比学习的BERT句向量提取模型
Github模型句子嵌入开源项目SimCSEHuggingface特征提取BERT自然语言处理
Princeton NLP小组开发的SimCSE模型采用BERT架构和无监督对比学习方法,通过英文维基百科数据训练而成。该模型能够有效提取文本特征,在保持语义对齐的同时优化了向量分布,主要应用于句子相似度计算和自然语言处理任务。
相关文章