Project Icon

Pytorch-Medical-Segmentation

基于PyTorch的医学图像分割框架 支持2D和3D多模态分析

Pytorch-Medical-Segmentation是一个开源医学图像分割框架,支持2D和3D多模态分析。该项目集成多种先进算法,兼容主流医学影像格式,提供灵活配置选项。内置训练推理流程和评估指标,便于研究人员和开发者快速实现各类医学图像分割任务。

GenerativeModels - MONAI医学影像生成模型库推动AI医疗研究
GithubMONAI人工智能医学图像开源项目深度学习生成模型
GenerativeModels是MONAI项目的子项目,致力于医学影像生成模型的研究。它提供多种生成模型架构,如扩散模型和自编码器,以及医学影像专用的损失函数和评估指标。项目包含与MONAI兼容的训练引擎和丰富教程,支持研究人员进行图像合成、异常检测和超分辨率重建等任务。这些工具和资源有助于推进医学AI领域的发展。
the-incredible-pytorch - PyTorch资源,包括教程、项目及工具库等
GithubPyTorch开源项目教程机器学习深度学习神经网络
详尽解析PyTorch生态系统!本项目集成了丰富的教程、库和视频资源,全面覆盖从基本知识到先进技术的不同需求。无论涉及数据可视化、对象检测或模型优化,均提供细致入微的资源,帮助各层次开发者提升机器学习实力。
doctr-torch-parseq-multilingual-v1 - 多语言OCR解决方案,兼具TensorFlow 2和PyTorch兼容性
DoctrGithubHuggingfacePyTorchTensorFlow 2光学字符识别开源项目模型模型预测
该项目是一种多语言光学字符识别(OCR)工具,支持TensorFlow 2和PyTorch,提供了流畅的用户体验。开发者可通过Python代码方便地加载和预测模型,实现从文字检测到识别的完整流程,非常适合需要多语言处理的应用。
ai-assisted-annotation-client - NVIDIA AI辅助医学影像标注客户端
AI辅助标注GithubNVIDIA医学影像客户端API开源项目跨平台
NVIDIA AI辅助标注客户端是一个跨平台的C++/Python API项目,用于与AI辅助标注服务器通信。支持Linux、macOS和Windows,提供MITK和3D Slicer插件。采用客户端-服务器架构,可集成到医学影像应用中,实现3D DEXTR、分割和多边形修复等功能,提升医学影像标注效率。
SegmentAnythingin3D - NeRF模型的三维目标分割框架SA3D
3D分割GithubNeRFSA3DSAM开源项目计算机视觉
SA3D是一个创新的三维目标分割框架,基于神经辐射场(NeRF)模型。它允许用户通过单一视图的手动提示,快速获取目标对象的3D分割结果。SA3D支持点提示和文本提示输入,处理时间约为2分钟。该框架在建筑、室内场景和复杂物体等多种应用场景中展现了良好的适应性,为3D场景感知和虚拟现实内容创作提供了新的可能。项目还包含直观的图形界面,便于研究人员和开发者进行快速实验和应用开发。
Awesome-Foundation-Models-in-Medical-Imaging - 医学影像基础模型研究文献资源汇总
Github人工智能医学影像基础模型开源项目深度学习计算机视觉
本项目汇总了医学影像领域基础模型相关的研究文献和资源。内容涵盖文本提示模型和视觉提示模型两大类,包括对比学习、对话式、生成式等多种模型。项目提供论文标题、作者、发表时间和链接等详细信息。这一资源集合为医学影像基础模型研究提供了全面的参考材料。
XrayGLM - 中文胸部X光片智能解读与诊断系统
GithubXrayGLM人工智能医学影像多模态模型开源项目胸部X光
XrayGLM是一个用于解读胸部X光片的中文医疗多模态模型,结合图像识别和自然语言处理技术分析X光影像并生成诊断报告。该模型基于MIMIC-CXR和OpenI数据集训练,支持影像诊断和多轮对话交互,为医疗影像诊断提供智能辅助。XrayGLM的开发促进了中文医学多模态模型的研究进展。
pix2pix3D - 基于2D标签图的3D感知条件图像生成模型
3D生成模型Githubpix2pix3D开源项目条件图像合成神经辐射场语义标签
pix2pix3D是一个3D感知条件生成模型,可以根据2D标签图(如分割图或边缘图)生成逼真的3D对象图像。该模型结合神经辐射场技术,能从多个视角渲染图像。通过同步生成图像和对应的标签图,pix2pix3D实现了交互式3D编辑功能,为可控的3D感知图像合成开辟了新途径。
llava-med-v1.5-mistral-7b - Mistral-7B驱动的生物医学视觉语言模型 快速训练的开源研究工具
GithubHuggingfaceLLaVA-Med人工智能模型医学图像识别开源项目模型生物医学视觉语言处理
LLaVA-Med-v1.5-Mistral-7b是一款专注生物医学领域的大型视觉语言模型。它基于PMC-15M数据集开发,采用课程学习方法训练,能处理多种医学图像类型,如显微镜、放射和组织学图像。该模型在PathVQA和VQA-RAD等基准测试中表现优异,为生物医学视觉语言研究提供了重要工具。值得注意的是,这是一个仅用于研究目的的开源项目,仅支持英语处理,不适用于临床环境。
deep-text-recognition-benchmark - 基于深度学习方法的文本识别
GithubPyTorch场景文本识别开源项目数据集模型分析深度学习
该项目是一个开源的场景文本识别框架,通过四阶段的官方PyTorch实现,支持现有大多数STR模型。它允许在统一的数据集上,评估各个模块的性能表现,包括准确性、速度和内存需求,并已被多个国际竞赛验证。用户可使用预训练模型进行测试,或进行更深入研究。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

白日梦AI

白日梦AI提供专注于AI视频生成的多样化功能,包括文生视频、动态画面和形象生成等,帮助用户快速上手,创造专业级内容。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

讯飞绘镜

讯飞绘镜是一个支持从创意到完整视频创作的智能平台,用户可以快速生成视频素材并创作独特的音乐视频和故事。平台提供多样化的主题和精选作品,帮助用户探索创意灵感。

Project Cover

讯飞文书

讯飞文书依托讯飞星火大模型,为文书写作者提供从素材筹备到稿件撰写及审稿的全程支持。通过录音智记和以稿写稿等功能,满足事务性工作的高频需求,帮助撰稿人节省精力,提高效率,优化工作与生活。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号