Project Icon

TSDB

高效便捷的时间序列数据集加载库

TSDB是一个时间序列数据集加载库,支持172个公开数据集的一键加载。该工具简化了研究人员和工程师的数据获取流程,使他们能专注于数据处理。TSDB具备数据下载、加载和缓存管理功能,并支持缓存目录迁移。作为PyPOTS工具箱的组成部分,TSDB为时间序列数据挖掘提供了基础支持。

pybaseball - 强大Python库简化棒球数据获取和分析
GithubPython包pybaseball开源项目数据分析数据抓取棒球统计
pybaseball是一个专注于棒球数据分析的Python库。它自动从Baseball Reference、Baseball Savant和FanGraphs等网站抓取数据,包括Statcast数据、投球和打击统计、联盟排名等。支持获取单场比赛到整个赛季的详细数据,并可自定义时间段进行数据聚合。这个工具包简化了数据获取过程,为棒球数据分析提供了便捷的访问方式。pybaseball还提供了如statcast、pitching_stats、batting_stats等函数,方便用户进行特定查询和数据分析。此外,它还支持本地数据缓存,提高了数据检索效率。
pyaf - Python开源库实现自动化时间序列预测
GithubPyAFPython开源项目时间序列预测机器学习自动化
PyAF是一个开源的Python自动预测库,基于NumPy、SciPy等流行数据科学模块构建。该库利用机器学习方法自动预测时间序列未来值,功能comparable于一些商业预测产品。它支持信号分解、外生数据和层次预测,提供简洁API和可定制建模过程。PyAF适用于Python 3.x,采用BSD 3-Clause许可证。PyAF可用于销售预测、股票走势分析、能源需求预测等多种时间序列预测任务。
ttop - 系统监控工具,实时性能分析与历史数据追踪
DockerGithubTUIttop历史数据服务开源项目系统监控工具
这是一款开源的系统监控工具,结合了实时性能分析和历史数据追踪功能。它提供类似top的TUI界面,支持历史快照保存、数据滚动查看和外部触发器设置。通过ASCII图表直观展示历史统计信息,还具备程序分组、搜索过滤和温度监控等特性。无需root权限,支持Docker环境,并能显示线程树,是跨平台的系统管理和性能分析利器。
Awesome-TimeSeries-SpatioTemporal-LM-LLM - 大型语言模型在时序和时空数据分析中的应用资源
Github基础模型大型语言模型开源项目时空数据时间序列预训练模型
该项目汇集了用于时间序列、时空数据和事件数据分析的大型语言模型及基础模型资源。内容全面涵盖了最新研究进展,包括论文、代码和数据集。涉及领域包括通用时间序列分析、交通、金融、医疗等多个应用方向,以及事件分析、时空图和视频数据等相关主题。项目为研究人员和实践者提供了一个综合性资源库,并持续更新最新成果。
talaria - 分布式高可用时序数据库与事件摄取平台
GithubTalaria事件摄取大数据实时查询开源项目数据库
Talaria是为大数据系统设计的分布式时序数据库。它既可作为事件摄取平台,又可用作热数据存储,每小时可查询2-3TB数据,具有低延迟和低成本特点。Talaria支持SQL查询,兼容多种工具生态系统,并提供多种存储接口。通过Presto Thrift连接器,可与Presto无缝集成。作为开源项目,Talaria为用户提供了灵活的部署选项和自定义可能性,特别适合需要快速处理和查询大量时序数据的场景。
pydlm - 基于Python的贝叶斯时间序列建模库
GithubPyDLMPython库开源项目数据分析时间序列建模贝叶斯动态线性模型
pydlm是一个Python时间序列建模库,基于贝叶斯动态线性模型。它提供了快速的模型拟合和推断,包含趋势、季节性和动态回归等灵活组件。支持前向过滤、后向平滑和长期预测,并具有简洁的API。pydlm适用于构建复杂时间序列模型,进行数据分析和预测。
awadb - AI原生向量数据库 实时高效易用
AIAwaDBGithub向量数据库实时搜索嵌入向量开源项目
AwaDB是一款为AI应用优化的向量数据库,无需复杂设置即可使用。它支持毫秒级实时搜索,基于多年生产经验打造,稳定可靠。AwaDB可本地运行或Docker部署,提供Python SDK和RESTful API,轻松处理文本、图像等非结构化数据的向量嵌入和检索。适用于各类AI应用场景,简化向量数据管理和检索流程。
scikit-learn-ts - Node.js环境下的Python机器学习库集成方案
GithubNode.jsPythonTypeScriptscikit-learn-ts开源项目机器学习
scikit-learn-ts项目为Node.js开发者提供了使用Python scikit-learn机器学习库的便捷方式。该项目自动生成257个TypeScript类,涵盖KMeans、TSNE和PCA等算法,性能优于纯JavaScript实现。适用于本地开发环境,配有详细文档和示例,简化了Node.js中的机器学习应用。
litdata - 优化数据处理和流式传输工具 提升AI模型训练效率
GithubLitData云存储开源项目数据优化数据处理模型训练
LitData是一个开源的数据处理和优化工具,专注于提升AI模型训练效率。它提供并行数据处理、向量嵌入创建、分布式推理和大规模网站抓取功能。LitData优化数据集以加速模型训练,支持云端大规模数据流式传输,并实现远程数据的无本地加载使用。这些特性使LitData成为提高数据处理效率和AI模型训练速度的有力工具。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号