Project Icon

XMem

长时视频对象分割的解决方案,基于人类多尺度记忆模型

XMem项目采用Atkinson-Shiffrin记忆模型,提供了一种全新的视频对象分割(VOS)方法。通过结合不同时间尺度的记忆单元,有效避免在处理长时视频时出现的计算和GPU内存问题。XMem可处理超过10000帧的视频,在有限GPU资源下仍保持高效,处理速度达每秒20帧,并附带简化版GUI。项目中还提供了详细的训练和推理指南,适用于实验和实际应用。

boxmot - BoxMOT:支持分割、目标检测和姿态估计的多对象跟踪模块
BoxMOTGithubYolov8多目标跟踪姿态估计开源项目目标检测
BoxMOT项目提供可插拔的多对象跟踪模块,支持分割、目标检测和姿态估计。提供适用于各种硬件配置的跟踪方法,包括CPU和GPU。兼容多种ReID模型及Yolov8、Yolo-NAS、YOLOX等目标检测模型,并通过快速实验脚本提高实验效率。
EfficientSAM - 基于掩码预训练的实时图像分割模型
EfficientSAMGithub分割模型图像处理开源项目深度学习计算机视觉
EfficientSAM是一个基于掩码图像预训练的通用图像分割模型,支持点提示、框提示、全景分割和显著性检测等功能。该模型在保持高精度的同时显著提高了处理速度,已集成到多个开源工具中。项目提供在线演示和Jupyter notebook示例,便于研究人员和开发者快速上手和应用。
MixFormerV2 - 高效全Transformer跟踪模型 实现CPU实时运行
GithubMixFormerV2Transformer开源项目模型蒸馏目标跟踪神经网络
MixFormerV2是一个统一的全Transformer跟踪模型,无需密集卷积操作和复杂评分预测模块。该模型提出四个关键预测token,有效捕捉目标模板与搜索区域的相关性。项目还引入新型蒸馏模型压缩方法,包括密集到稀疏和深层到浅层两个阶段。MixFormerV2在LaSOT和TNL2k等多个基准测试中表现优异,分别达到70.6%和57.4%的AUC,同时在GPU上保持165fps的推理速度。值得注意的是,MixFormerV2-S是首个在CPU上实现实时运行的基于Transformer的单流跟踪器。
RepViT - 移动设备上的高效实时视觉模型
GithubRepViT-SAMSAM模型实时分割开源项目移动设备轻量级CNN
RepViT是一个轻量级CNN模型家族,整合了Vision Transformer的架构设计,在移动设备上实现了80%以上的ImageNet准确率,延迟仅1毫秒。RepViT-SAM将RepViT应用于SAM模型,显著降低了计算需求,实现了移动设备上的实时任意目标分割。这两个模型在图像分类、目标检测和语义分割等视觉任务中均表现出色,兼具高性能和高效率。
VoxFormer - 基于稀疏体素变换器的相机驱动3D语义场景补全方法
3D语义场景补全CVPRGithubVoxFormer开源项目计算机视觉语义分割
VoxFormer是一种基于Transformer的创新框架,仅通过2D图像即可生成完整的3D语义体素。它采用两阶段设计:先从深度估计生成可见占据体素查询,再通过密集化阶段生成完整3D体素。在SemanticKITTI数据集上,VoxFormer在几何和语义方面分别提升了20.0%和18.1%,同时将训练所需GPU内存减少约45%。这为相机驱动的3D语义场景补全任务提供了一个强有力的基线。
mmsegmentation - 高效的PyTorch语义分割工具箱与新特性介绍
GithubMMSegmentationOpenMMLabPyTorchv1.0.0开源项目语义分割
MMSegmentation是基于PyTorch的开源语义分割框架,提供模块化设计和统一基准,支持多种算法。最新v1.2.0版本新增开放词汇语义分割和单目深度估计功能,提升训练效率和快速部署体验。
StreamingT2V - 先进的长视频生成技术 实现连贯动态和可扩展内容
GithubStreamingT2V一致性动态视频开源项目文本到视频长视频生成
StreamingT2V是一种创新的自回归技术,专门用于生成长时间、连贯一致的视频内容。该技术无需分段处理即可创建动态丰富的视频,确保了时间上的连贯性,同时保持与文本描述的高度契合和单帧图像的优质表现。目前已实现生成1200帧(约2分钟)的视频,并具有进一步延长的潜力。值得注意的是,StreamingT2V的性能不局限于特定的文本到视频模型,这意味着随着基础模型的进步,视频质量有望进一步提升。
4DMOS - 3D LiDAR数据中的稀疏4D卷积移动物体分割
4DMOSGithubLiDAR开源项目移动物体分割稀疏4D卷积语义KITTI
4DMOS是一个基于稀疏4D卷积的3D LiDAR数据移动物体分割项目。该方法通过MinkowskiEngine处理点云序列,提取时空特征实现移动目标识别。项目开源了预训练模型、Docker环境和使用说明,支持在SemanticKITTI数据集上应用。研究成果发表于IEEE RA-L,为自动驾驶和机器人导航提供了新的技术方案。
InternLM-XComposer - 多模态视觉语言模型实现超高分辨率理解与多场景交互
GithubInternLM-XComposer-2.5多回合多图对话多模态大语言模型开源项目网页制作高分辨率图像理解
InternLM-XComposer-2.5是一款高级多模态视觉语言模型,能处理高达96K的复杂图文背景。该模型优秀适用于超高清图像分析、多轮对话生成、网页创建等任务,并通过特殊算法优化输出质量,在多个基准测试中表现卓越。
EdgeSAM - 边缘设备上快速的分割模型EdgeSAM
CNNEdgeSAMGithubSAMiOS应用开源项目高性能
EdgeSAM通过优化的Prompt-In-the-Loop蒸馏方法,为边缘设备提供高效的分割模型。相较于原始SAM,EdgeSAM在速度上提升了40倍,并在iPhone 14上实现了超过30帧每秒的性能。此外,EdgeSAM在COCO和LVIS数据集上的mIoUs分别提升了2.3和3.2,性能优于MobileSAM。该项目支持ONNX和CoreML平台,并已经集成到多个开源工具中。用户还可以通过iOS App方便地使用EdgeSAM。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号