Project Icon

Marigold

基于扩散模型的单目深度估计新方法

Marigold项目开发了一种基于扩散模型的单目深度估计方法。该方法利用Stable Diffusion中的视觉知识,通过合成数据微调,实现了对未见数据的零样本迁移。Marigold不仅提供了高精度的深度估计结果,还包含快速推理版本,为计算机视觉领域提供了新的研究方向。

Smooth-Diffusion - 提升扩散模型潜在空间平滑性的新方法
CVPR 2024GithubSmooth Diffusion图像生成开源项目扩散模型潜在空间
Smooth Diffusion是一种创新的扩散模型技术,通过优化潜在空间的平滑性来提升模型性能。这种方法在图像插值、反演和编辑任务中展现出显著优势,实现了更连续的过渡效果、更低的反演误差,以及更好的未修改内容保留。通过在训练过程中引入变化约束,Smooth Diffusion为扩散模型研究开辟了新方向。
Depth-Anything-V2-Base - 更快更精细的单目深度估计模型
Depth-Anything-V2GithubHuggingface图像处理开源项目模型深度估计深度学习计算机视觉
Depth-Anything-V2是一款先进的单目深度估计模型,由595K合成标记图像和62M+真实未标记图像训练而成。它在细节表现、鲁棒性和效率上都超越了V1版本,处理速度比基于SD的模型快10倍。采用ViT-B架构,该模型为计算机视觉领域提供了高效的深度预测工具,尤其适用于需要精确深度信息的应用场景。
flowmap - 基于梯度下降的相机姿态、内参和深度优化技术
FlowMapGithub光流开源项目深度学习相机姿态估计计算机视觉
FlowMap是一种创新的相机姿态、内参和深度估计技术,通过梯度下降优化获得高质量结果。该开源项目提供完整代码实现、预训练模型和评估数据集,支持多种数据集并提供丰富的实验配置。FlowMap在多个基准测试中表现出色,为计算机视觉和3D重建研究提供了有力支持。
Real3D - 基于真实图像的大规模3D重建模型
3D重建GithubReal3D开源项目深度学习自监督学习计算机视觉
Real3D是一种创新的大规模3D重建模型系统,首次实现了使用单视图真实图像进行训练。该系统采用自训练框架,结合3D/多视图合成数据和单视图真实图像,并引入两种无监督损失函数,实现像素和语义层面的模型监督。在包含真实和合成数据、域内和域外形状的四种评估场景中,Real3D均显著优于现有方法。
depth_anything_vitl14 - 先进的计算机视觉深度估计开源框架
Depth AnythingGithubHuggingface图像处理开源项目模型深度估计深度学习计算机视觉
depth_anything_vitl14是一个深度估计模型框架,专注于从单张图像中提取深度信息。该框架采用大规模无标记数据训练方式,具备完整的模型部署文档和Python接口。开发者可通过简单的代码调用实现图像深度估计,项目同时提供在线演示平台和技术文档支持。
2dimageto3dmodel - 创新损失函数实现单图2D到3D模型生成
3D模型生成GANGithub单图重建开源项目损失函数点云
该项目开发了一种新型损失函数,能够直接从单张2D图像生成3D模型,无需复杂的渲染过程。项目采用条件GAN架构实现纹理映射,并优化了点云到3D网格的转换技术。在CUB鸟类和Pascal 3D+数据集上的测试显示了显著效果。此外,项目还提供预训练模型、伪真值生成和网格生成器训练等功能,为3D重建研究领域贡献了实用工具和参考方法。
CF-3DGS - 免COLMAP的3D高斯散射场景重建技术
3D Gaussian SplattingGithub三维重建开源项目无监督学习神经渲染计算机视觉
CF-3DGS是一种新型3D场景重建技术,无需依赖COLMAP等传统SfM工具。该方法可直接从未标定图像序列学习3D高斯散射表示,通过迭代优化相机姿态和场景表示来实现高质量新视角合成。在Tanks and Temples等数据集上,CF-3DGS展现出优秀性能,为3D重建和新视角合成领域提供了高效灵活的解决方案。
sd-controlnet-depth - 结合深度估计的文本到图像扩散模型
ControlNetGithubHuggingface图像生成开源项目条件控制模型深度估计稳定扩散
ControlNet通过深度估计条件增强了Stable Diffusion等模型,允许在个人设备和高性能集群上进行快速训练,即使数据集较小。开发者Lvmin Zhang与Maneesh Agrawala提出的模型具有灵活性,加强了扩散模型的控制方式,推进应用实现。其多种检查点以不同条件训练,提供精细的生成控制。
dreamscene4d - 从单目视频生成动态多目标3D场景的突破性技术
3D场景生成DreamScene4DGithub多目标跟踪开源项目视频处理计算机视觉
DreamScene4D是一种从单目视频生成动态多目标3D场景的开源技术。它采用3D高斯和形变优化方法,能处理不同长度的视频和多个目标。项目提供自动化和分阶段优化脚本,支持处理有遮挡和无遮挡的视频。DreamScene4D在复杂场景和长视频序列处理方面表现优异,为计算机视觉和图形学研究提供了新思路。
flash-diffusion - 用于加速条件扩散模型的高效蒸馏技术
Flash DiffusionGithubLoRA加速技术图像生成开源项目扩散模型
Flash Diffusion是一种用于加速预训练扩散模型图像生成的蒸馏方法。该技术高效、快速、通用且兼容LoRA,在COCO数据集上实现了少步骤图像生成的先进性能。Flash Diffusion只需几小时GPU训练时间和较少可训练参数,适用于文本生成图像、图像修复、换脸和超分辨率等多种任务。它支持UNet和DiT等不同骨干网络,能够显著减少采样步骤,同时保持高质量的图像生成效果。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号