Project Icon

Automatic-Circuit-Discovery

推进神经网络可解释性研究的自动化工具

Automatic Circuit DisCovery (ACDC)项目提供了一套自动化工具,用于探索神经网络内部机制,提高模型可解释性。项目包含NeurIPS 2023聚焦论文的配套代码,实现了ACDC算法、计算图编辑功能和可编辑计算图的底层实现。基于TransformerLens库开发,支持Python 3.8+环境,并提供完整的安装和使用文档。该工具为研究人员提供了深入分析神经网络内部结构的新方法。

transformer-debugger - 深入洞察小型语言模型行为的自动化调试工具
GithubTransformer Debugger开源项目神经元查看器稀疏自编码器自动可解释性语言模型
Transformer Debugger是一款由OpenAI超级对齐团队开发的工具,专门用于分析小型语言模型的特定行为。该工具结合了自动化解释技术和稀疏自编码器,无需编写代码即可快速探索模型行为。它能识别影响特定行为的关键组件,自动生成解释,并追踪组件间的连接,从而揭示神经元回路。通过支持对前向传播的干预和观察,Transformer Debugger为研究人员提供了深入分析语言模型内部机制的强大功能。
automated-interpretability - 语言模型神经元行为的自动化解释工具
GPT-2Github开源项目数据集模型权重神经元行为自动解释性
automated-interpretability项目开发了一套自动化工具,用于生成、模拟和评分语言模型中神经元行为的解释。该项目提供了代码库、神经元激活查看器和GPT-2 XL神经元的公开数据集。这些资源旨在帮助研究人员和开发者深入理解大型语言模型的内部机制。
cnn-explainer - 互动可视化工具,帮助用户理解卷积神经网络
CNN ExplainerGeorgia TechGithub交互式可视化卷积神经网络开源项目机器学习教育
CNN Explainer 是一个用于学习卷积神经网络的互动可视化工具,提供实时演示和本地运行功能。用户可以克隆代码库并在本地环境中运行,支持自定义模型和图像类别。该工具由乔治亚理工学院与俄勒冈州立大学合作开发。
ncps - NCP、LTC 和 CfC 有线神经模型的 PyTorch 和 TensorFlow 实现
CfCGithubLTCNeural Circuit PoliciesPyTorchTensorFlow开源项目
神经电路策略(NCPs)是一种设计稀疏递归神经网络的方法,灵感来源于秀丽隐杆线虫的神经系统。该开源项目提供与PyTorch和TensorFlow兼容的模块,增强可审计的自主性。其安装步骤简便,并且提供了丰富的文档和互动教程,帮助用户从基础到复杂模型的创建。多种示例和教程,包括在Google Colab上的演示,让用户快速掌握NCPs的应用。
accel-brain-code - 深度学习和机器学习算法库集合
Github开源项目强化学习机器学习深度学习生成对抗网络自动编码器
accel-brain-code是一个开源项目,集成了多个深度学习和机器学习算法库。它包括自动编码器、生成对抗网络、深度强化学习等模块,旨在通过概念验证和研发创建原型。该项目探索了AI民主化后的机器学习研发可能性,为快速开发复杂AI系统提供了基础。其功能涵盖自动摘要、强化学习、生成对抗网络等多个领域。
DiCE - 机器学习模型的多样性反事实解释方法
DiCEGithubPython反事实解释开源项目机器学习模型解释
DiCE提供机器学习模型的反事实(CF)解释,通过生成特征扰动版本帮助探索模型的假设情景。适用于财务、医疗、教育等领域,支持生成多样性和接近原始输入的解释。提供Python支持,随时可通过PyPI和Conda安装。其优化算法和简单约束功能确保对各种ML模型的广泛适应性。
llm-transparency-tool - 深入分析Transformer语言模型的交互式可视化工具
GithubLLM Transparency Tool可视化分析开源项目神经网络语言模型贡献图
LLM Transparency Tool是一个用于分析Transformer语言模型的交互式工具。该工具支持选择模型和提示、运行推理,并通过贡献图可视化模型内部机制。它能够展示token表示、注意力头和前馈网络块的详细信息,有助于理解模型的决策过程。这个工具兼容多种模型,并提供Docker部署选项,是研究人员和开发者分析语言模型的实用资源。
electra-small-generator - 电教工具ELECTRA:文本编码新方法
ELECTRAGithubHuggingfacetransformer开源项目模型神经网络语言表示预训练
ELECTRA是一种自监督语言表示学习方法,用于优化Transformer网络的预训练。该模型在小规模下可用单GPU运行,并在大规模数据集如SQuAD 2.0上实现了优异表现。ELECTRA的训练方式借鉴了GAN中的判别器,通过区分真实与虚假输入令牌来学习。项目库提供了ELECTRA的预训练及下游任务精调代码,适用于分类、问答和序列标注等任务。
TransformerLens - 深入解析生成式语言模型的机制解释工具
GithubTransformerLens开源工具开源项目机械可解释性神经网络解析语言模型
TransformerLens是一个开源库,专门用于解释生成式语言模型的内部机制。它支持加载50多种开源语言模型,让研究人员能够访问模型的内部激活。用户可以缓存激活数据,并在模型运行时进行编辑、删除或替换。这个工具为深入理解复杂语言模型的工作原理提供了有力支持。
transformer-explainer - 帮助理解Transformer模型与GPT-2预测的实时交互式工具
GPT-2Georgia Institute of TechnologyGithubMIT许可Transformer Explainer交互式可视化工具开源项目
Transformer Explainer 是一款互动可视化工具,帮助理解基于Transformer的模型如GPT的工作原理。该工具在浏览器中运行实时的GPT-2模型,允许实验自己的文本并实时观察Transformer内部组件的协同预测过程。适合技术人员与学习者深入探索Transformer模型机制与应用。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号