Project Icon

CoDet

共现引导的开放词汇目标检测方法

CoDet是一种开放词汇目标检测方法,采用共现引导来对齐区域和词语。该方法利用大规模图像-文本对训练,在LVIS和COCO数据集上表现优异。CoDet兼容现代视觉基础模型,并可与Roboflow集成实现自动图像标注。这一方法为开放词汇目标检测领域提供了新的解决方案。

OBBDetection - 多框架支持的开源目标检测工具箱 提供灵活表示方法
GithubMMdetectionOBBDetection开源项目深度学习目标检测计算机视觉
OBBDetection是基于MMdetection v2.2的开源目标检测工具箱。它支持多种检测框架,包括RoI Transformer和Gliding Vertex等。该工具箱提供灵活的检测框表示方法,涵盖水平边界框、定向边界框和4点框。OBBDetection实现了S2ANet、Oriented R-CNN等多种最新定向目标检测方法,同时也兼容多种水平检测算法。作为一个全面的目标检测工具,它继承了MMdetection的特性,适用于各种复杂场景的目标检测任务。
CogVLM - 开源视觉语言模型,提升图像理解与跨模态对话功能
CogAgentCogVLMGithub图像理解多回合对话开源项目跨模态基准测试
CogVLM和CogAgent是领先的开源视觉语言模型,专注于图像理解和跨模态任务。CogVLM-17B拥有100亿视觉参数和70亿语言参数,并在NoCaps、Flicker30k等十个经典跨模态基准测试上表现出色。CogAgent在CogVLM的基础上改进,增添了GUI图像代理能力,支持1120*1120分辨率的图像理解,并在VQAv2、TextVQA等九个基准测试中表现优秀。该项目提供详细的技术文档、示例代码和Web演示,用户可以方便地进行模型推理和微调。了解更多信息,请访问项目主页。
yolov10n - YOLOv10n:实时对象检测的创新技术
COCO数据集GithubHuggingfacePyTorch模型YOLOv10实时物体检测开源项目模型计算机视觉
YOLOv10n项目展示了对象检测的实时进展,结合计算机视觉与对象识别算法。其基于PyTorch的实现并支持COCO数据集用于训练与推理,保证了性能和应用的广泛性。简单的安装和模块调用,提供了快速的目标物体检测及识别功能,支持优化模型上传至相关平台,提升模型精度与效率。
image-text-localization-recognition - 场景文本检测与识别研究进展资源汇总
Github人工智能场景文本检测开源项目文本识别深度学习计算机视觉
该项目汇总了场景文本检测与识别领域的最新研究成果,包含牛津大学、深圳先进技术研究院、华南理工大学等机构发表的论文和开源代码。内容覆盖文本检测、文本识别、端到端文本识别等方向,为相关研究提供全面参考。项目保持更新,持续跟踪领域进展,是场景文本分析研究的重要资源库。
RevCol - 多任务计算机视觉的新型架构
GithubRevCol图像分类开源项目目标检测计算机视觉语义分割
RevCol是一种新型神经网络架构,采用多个子网络(列)通过多层可逆连接组成。作为基础模型骨干,RevCol适用于图像分类、目标检测和语义分割等计算机视觉任务。该架构在ImageNet等基准测试中表现优异,项目提供了训练和评估代码,以及多个数据集上的预训练模型权重,方便研究人员进行进一步探索。
yolov10m - 高效的实时目标检测系统
COCO数据集GithubHuggingfacePyTorchYOLOv10开源项目模型目标检测计算机视觉
YOLOv10m是一个开源的目标检测项目,利用PyTorch模型和COCO数据集实现高效的计算机视觉解决方案。用户可以方便地进行训练、验证,并将模型上传至库,非常适合多种技术水平的使用者进行实时目标检测应用。
DenseCL - 改进密集预测任务的视觉预训练方法
DenseCLGithub密集预测对比学习开源项目自监督学习视觉预训练
DenseCL是一种自监督视觉预训练方法,通过密集对比学习提升模型在密集预测任务中的表现。该方法实现简洁,核心部分仅需10行代码,适配多种数据增强技术。实验表明,DenseCL在目标检测和语义分割任务中性能显著提升,同时保持训练效率。项目开源了预训练模型和使用指南,便于研究者在视觉任务中应用。
detr-doc-table-detection - 基于DETR模型的文档表格智能识别系统
DETRGithubHuggingface开源项目文档处理模型深度学习目标检测表格检测
detr-doc-table-detection是一个基于DETR架构的文档表格检测模型,能够精准识别有边框和无边框表格。该模型由Taha Douaji开发,采用ICDAR2019数据集训练,适用于各种文档分析场景。模型提供简洁的API接口,便于集成到现有系统中。作为文档信息提取的重要工具,它在提高数据处理效率方面具有显著优势。
grounding-dino-tiny - Grounding DINO模型实现开放集目标检测的创新突破
GithubGrounding DINOHuggingface开源项目模型深度学习目标检测计算机视觉零样本学习
Grounding DINO模型通过结合DINO与接地预训练技术,实现了开放集目标检测。该模型添加文本编码器,扩展了传统闭集检测模型的能力,可进行零样本目标检测。在COCO数据集上,Grounding DINO取得了52.5 AP的优秀成绩,为计算机视觉中未标记物体的识别提供了新的解决方案。
owlv2-large-patch14 - 开源零样本对象检测模型,支持多文本查询
AI研究CLIPGithubHuggingfaceOWLv2图像识别开源项目模型目标检测
OWLv2模型是一种零样文本感知对象检测模型,使用CLIP作为多模态骨干,通过结合视觉和文本特征实现开词汇检测。模型去除了视觉模型的最终token池化层,并附加分类和框头,能够处理多文本查询,扩展了图像识别的应用潜力。研究者通过重新训练和微调CLIP,提高了其在公开检测数据集上的性能,有助于探讨计算机视觉模型的鲁棒性。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号