Project Icon

burr

基于状态机的智能应用开发框架

Burr是一个基于状态机的Python开发框架,专门用于构建智能决策应用。它通过简单的Python构建块简化了聊天机器人、智能代理和模拟等应用的开发过程。Burr内置实时跟踪和监控界面,并提供可插拔的持久化功能来管理应用状态。该框架适用于各类LLM应用,可与多种现有框架无缝集成。Burr采用简洁的核心API,利用状态机表达应用逻辑,有效管理复杂决策和工作流程。

Burr

Discord Downloads GitHub Last Commit X

Burr makes it easy to develop applications that make decisions (chatbots, agents, simulations, etc...) from simple python building blocks.

Burr works well for any application that uses LLMs, and can integrate with any of your favorite frameworks. Burr includes a UI that can track/monitor/trace your system in real time, along with pluggable persisters (e.g. for memory) to save & load application state.

Link to documentation. Quick (<3min) video intro here. Longer video intro & walkthrough. Blog post here. Join discord for help/questions here.

🏃Quick start

Install from pypi:

pip install "burr[start]"

(see the docs if you're using poetry)

Then run the UI server:

burr

This will open up Burr's telemetry UI. It comes loaded with some default data so you can click around. It also has a demo chat application to help demonstrate what the UI captures enabling you too see things changing in real-time. Hit the "Demos" side bar on the left and select chatbot. To chat it requires the OPENAI_API_KEY environment variable to be set, but you can still see how it works if you don't have an API key set.

Next, start coding / running examples:

git clone https://github.com/dagworks-inc/burr && cd burr/examples/hello-world-counter
python application.py

You'll see the counter example running in the terminal, along with the trace being tracked in the UI. See if you can find it.

For more details see the getting started guide.

🔩 How does Burr work?

With Burr you express your application as a state machine (i.e. a graph/flowchart). You can (and should!) use it for anything in which you have to manage state, track complex decisions, add human feedback, or dictate an idempotent, self-persisting workflow.

The core API is simple -- the Burr hello-world looks like this (plug in your own LLM, or copy from the docs for gpt-X)

from burr.core import action, State, ApplicationBuilder

@action(reads=[], writes=["prompt", "chat_history"])
def human_input(state: State, prompt: str) -> State:
    # your code -- write what you want here!
    return state.update(prompt=prompt).append(chat_history=chat_item)

@action(reads=["chat_history"], writes=["response", "chat_history"])
def ai_response(state: State) -> State:
    response = _query_llm(state["chat_history"]) # Burr doesn't care how you use LLMs!
    return state.update(response=content).append(chat_history=chat_item)

app = (
    ApplicationBuilder()
    .with_actions(human_input, ai_response)
    .with_transitions(
        ("human_input", "ai_response"),
        ("ai_response", "human_input")
    ).with_state(chat_history=[])
    .with_entrypoint("human_input")
    .build()
)
*_, state = app.run(halt_after=["ai_response"], inputs={"prompt": "Who was Aaron Burr, sir?"})
print("answer:", app.state["response"])

Burr includes:

  1. A (dependency-free) low-abstraction python library that enables you to build and manage state machines with simple python functions
  2. A UI you can use view execution telemetry for introspection and debugging
  3. A set of integrations to make it easier to persist state, connect to telemetry, and integrate with other systems

Burr at work

💻️ What can you do with Burr?

Burr can be used to power a variety of applications, including:

  1. A simple gpt-like chatbot
  2. A stateful RAG-based chatbot
  3. An LLM-based adventure game
  4. An interactive assistant for writing emails

As well as a variety of (non-LLM) use-cases, including a time-series forecasting simulation, and hyperparameter tuning.

And a lot more!

Using hooks and other integrations you can (a) integrate with any of your favorite vendors (LLM observability, storage, etc...), and (b) build custom actions that delegate to your favorite libraries (like Hamilton).

Burr will not tell you how to build your models, how to query APIs, or how to manage your data. It will help you tie all these together in a way that scales with your needs and makes following the logic of your system easy. Burr comes out of the box with a host of integrations including tooling to build a UI in streamlit and watch your state machine execute.

🏗 Start building

See the documentation for getting started, and follow the example. Then read through some of the concepts and write your own application!

📃 Comparison against common frameworks

While Burr is attempting something (somewhat) unique, there are a variety of tools that occupy similar spaces:

CriteriaBurrLanggraphtemporalLangchainSuperagentHamilton
Explicitly models a state machine
Framework-agnostic
Asynchronous event-based orchestration
Built for core web-service logic
Open-source user-interface for monitoring/tracing
Works with non-LLM use-cases

🌯 Why the name Burr?

Burr is named after Aaron Burr, founding father, third VP of the United States, and murderer/arch-nemesis of Alexander Hamilton. What's the connection with Hamilton? This is DAGWorks' second open-source library release after the Hamilton library We imagine a world in which Burr and Hamilton lived in harmony and saw through their differences to better the union. We originally built Burr as a harness to handle state between executions of Hamilton DAGs (because DAGs don't have cycles), but realized that it has a wide array of applications and decided to release it more broadly.

🛣 Roadmap

While Burr is stable and well-tested, we have quite a few tools/features on our roadmap!

  1. Recursive state machines. Run Burr within Burr to get hierarchical agents/parallelism + track through to the UI.
  2. Testing & eval curation. Curating data with annotations and being able to export these annotations to create unit & integration tests.
  3. Various efficiency/usability improvements for the core library (see planned capabilities for more details). This includes:
    1. Fully typed state with validation
    2. First-class support for retries + exception management
    3. More integration with popular frameworks (LCEL, LLamaIndex, Hamilton, etc...)
    4. Capturing & surfacing extra metadata, e.g. annotations for particular point in time, that you can then pull out for fine-tuning, etc.
  4. Tooling for hosted execution of state machines, integrating with your infrastructure (Ray, modal, FastAPI + EC2, etc...)
  5. Storage integrations. More integrations with technologies like Redis, MongoDB, MySQL, etc. so you can run Burr on top of what you have available.
  6. More out of the box plugins for fine-grained tracing, e.g. decorators for your functions, LLM clients, etc.

If you want to avoid self-hosting the above solutions we're building Burr Cloud. To let us know you're interested sign up here for the waitlist to get access.

🤲 Contributing

We welcome contributors! To get started on developing, see the developer-facing docs.

👪 Contributors

Code contributions

Users who have contributed core functionality, integrations, or examples.

Bug hunters/special mentions

Users who have contributed small docs fixes, design suggestions, and found bugs

项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号