Project Icon

H2O

提升大型语言模型推理效率的关键token识别技术

H2O项目提出了一种创新的KV缓存实现方法,通过识别对注意力分数贡献最大的少数token,显著减少了大型语言模型推理的内存占用。该项目引入了Heavy Hitter Oracle (H2O)作为KV缓存淘汰策略,在多个任务中验证了其准确性。在OPT-6.7B和OPT-30B模型上,H2O显著提高了推理吞吐量并减少了延迟,为大型语言模型的高效推理提供了新的解决方案。

KVQuant - 提升长上下文推理效率的KV缓存量化方法
GithubKVQuantLLaMA-7B低精度量化大模型开源项目长上下文长度推断
KVQuant通过精确的低精度量化技术显著提升长上下文长度推理的效率。其创新包括每通道的RoPE前关键量化和非均匀量化,以应对不同LLM中缓存的KV值模式。KVQuant支持在单个A100-80GB GPU上进行LLaMA-7B模型的1M上下文长度推理,甚至在8-GPU系统上支持长达10M上下文长度,从而减少推理过程中KV缓存的内存瓶颈,并通过并行topK支持和注意力感知量化等多项改进提升推理性能。
h2o-3 - 支持多编程语言的高性能内存中分布式机器学习平台
GithubH2O-3分布式机器学习开源资源开源项目模型部署算法
H2O-3是一个支持多编程语言的高性能内存中分布式机器学习平台,提供广泛的算法如GLM、随机森林、深度神经网络等,并可扩展以添加自定义算法。平台与Hadoop和Spark等大数据技术完美整合,可通过POJO或MOJO格式轻松导出模型至生产环境,适合各类数据科学家在大数据场景下进行机器学习开发。
h2o-danube3-500m-base - 500M参数的大规模语言模型,支持离线文本生成
GPTGithubH2O.aiHuggingface大语言模型开源项目模型模型架构转化器
由H2O.ai推出的h2o-danube3-500m模型,是一个大规模语言模型,采用Llama 2架构调整及500M参数设计。模型支持原生离线运行,尤其适用于手机设备,并集成Mistral分词器,拥有32,000词汇量及8,192长度的上下文生成能力。在支持transformers库的环境中,模型可在GPU设备上有效运行,并且支持量化和多GPU分片处理。重要提醒用户在使用模型生成的内容时保持审慎态度并自行承担责任。
honeybee - 优化多模态大语言模型性能的局部性增强投影器
GithubHoneybee多模态大语言模型局部性增强投影器开源项目深度学习计算机视觉
Honeybee项目通过局部性增强投影器提升多模态大语言模型性能。该项目在MMB、MME、SEED-I等基准测试中表现优异,提供预训练和微调模型检查点。Honeybee支持多种数据集,包含详细的数据准备、训练和评估指南,为多模态AI研究和开发提供开源工具。
speculative-decoding - 推测解码技术,优化大型语言模型推理速度
GithubSpeculative Decoding大语言模型开源项目性能优化推理加速自然语言处理
该开源项目聚焦于推测解码技术的研究与实现,旨在提升大型语言模型的文本生成效率。项目涵盖了多种推测解码策略,包括提前退出、推测采样和先知变压器。同时,项目致力于优化批处理推测解码,以增强整体性能。研究计划还包括对比不同策略的效果,并探索微观优化方法。这些工作为加快AI模型推理速度提供了新的技术思路。
KIVI - 高效2比特KV缓存量化算法提升大型语言模型性能
GithubKIVIKV缓存量化LLM内存优化开源项目推理加速
KIVI是一种创新的2比特KV缓存量化算法,无需模型微调即可优化大型语言模型的内存使用。该算法对键缓存按通道、值缓存按令牌进行量化,适用于Llama-2、Falcon和Mistral等模型。KIVI在保持模型质量的同时,将峰值内存使用降低2.6倍,批处理大小提升4倍,推理吞吐量增加2.35至3.47倍。其硬件友好设计有效缓解了大型语言模型推理中的速度和内存瓶颈问题。
AutoAWQ - 面向大型语言模型的高效4位量化框架
AutoAWQGPU加速Github大语言模型开源项目推理量化
AutoAWQ是一个专门针对大型语言模型的4位量化框架,通过实现激活感知权重量化算法,可将模型速度提升3倍,同时减少3倍内存需求。该框架支持Mistral、LLaVa、Mixtral等多种模型,具备多GPU支持、CUDA和ROCm兼容性以及PEFT兼容训练等特性。AutoAWQ为提升大型语言模型的推理效率提供了有力工具。
gemma-2B-10M - Gemma 2B模型实现1000万token上下文处理 仅需32GB内存
Gemma 2BGithub内存优化局部注意力开源项目推理优化长上下文
gemma-2B-10M项目采用递归局部注意力机制,在32GB内存限制下实现了处理1000万token上下文的能力。该项目为Gemma 2B模型提供CUDA优化的推理功能,显著提升了处理效率。项目设计简洁易用,便于开发者快速应用。虽然目前处于早期阶段,但在长文本处理领域展现出巨大潜力,有望推动相关技术的进步。
huozi - 支持32K上下文的双语稀疏混合专家模型
GithubHIT-SCIR中文MT-Bench开源项目活字3.0活字通用大模型自然语言处理
活字3.0是一个支持32K上下文的稀疏混合专家模型,具备中英文知识、数学推理和代码生成能力,并在指令遵循和安全性上有所提升。项目开源了中文MT-Bench数据集,支持多种推理框架如Transformers、vLLM和llama.cpp,为自然语言处理研究和应用提供更多选择。
Mooncake - 大语言模型服务架构采用KVCache分离设计
GithubKVCacheLLM服务Mooncake分离架构吞吐量开源项目
Mooncake是一种创新的大语言模型服务架构。它采用以KVCache为中心的分离设计,将预填充和解码集群分开,并充分利用GPU集群的闲置资源实现KVCache的分布式缓存。Mooncake的核心调度器在确保延迟服务水平目标的同时,最大化系统的有效吞吐量。通过实施预测性早期拒绝策略,该架构在高负载情况下表现优异,尤其适合长上下文场景。实验结果表明,在特定模拟环境中,Mooncake能够在满足服务水平目标的前提下,将系统吞吐量提升525%。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号