Project Icon

3D-deformable-attention

3D可变形注意力技术提升自动驾驶物体检测精度

3D-deformable-attention项目提出了3D可变形注意力(DFA3D)操作符,用于2D到3D特征提升。该方法首先利用深度估计将2D特征扩展到3D空间,再通过DFA3D聚合3D特征。这种方法缓解了深度歧义问题,并支持逐层特征细化。在多个基准测试中,DFA3D平均提高1.41 mAP,高质量深度信息下最高提升15.1 mAP。研究结果显示DFA3D在自动驾驶3D目标检测等任务中具有较大潜力。

transfuser - 创新传感器融合技术助力自动驾驶进步
CARLAGithubTransFuser传感器融合开源项目深度学习自动驾驶
TransFuser项目采用Transformer架构实现多模态传感器数据融合,显著提高自动驾驶系统性能。该方法在CARLA自动驾驶基准测试中表现出色,为端到端自动驾驶提供了新思路。项目开源代码、数据集和预训练模型,便于研究者进行复现和深入研究。
pytorch-auto-drive - 基于 PyTorch 的分割模型和车道检测模型
GithubPyTorchPytorchAutoDrive开源项目模型部署语义分割车道检测
框架基于纯Python和PyTorch,提供从模型训练、测试到可视化和部署的全方位支持。特色包括多种主干网络、简洁易懂的代码、混合精度训练及ONNX和TensorRT的部署支持。该框架中模型训练速度快,性能优于其他实现,支持多种数据集和模型方法,为自动驾驶研究提供可靠的基准测试和高效工具。
SegmentAnything3D - Segment Anything技术在3D场景中的创新应用
3D感知GithubSegment Anything 3D图像分割开源项目点云处理计算机视觉
SAM3D项目将Segment Anything技术扩展到3D感知领域,通过将2D图像分割信息转移到3D空间,为3D场景理解提供新思路。该项目结合SAM生成掩码、点云合并和区域合并等技术,实现2D到3D的有效转换。SAM3D不仅拓展了计算机视觉的应用范围,也为3D场景分析和理解开辟了新的研究方向。
UniTR - 多模态变换器网络推动3D感知进展
3D感知BEV分割GithubUniTR多模态转换器开源项目目标检测
UniTR是一种新型统一多模态变换器网络,用于3D感知任务。它通过共享权重处理相机和激光雷达等多传感器数据,实现高效多模态融合。在nuScenes数据集上,UniTR在3D目标检测和BEV地图分割任务中均达到最新水平,且降低推理延迟。该研究为提升自动驾驶系统的感知能力提供了新思路。
Agent-Driver - 革命性智能驾驶系统 融合人类智慧与AI技术
Agent-DriverGithub人工智能大型语言模型开源项目自动驾驶认知代理
Agent-Driver是一个创新型自动驾驶系统,通过大型语言模型作为认知代理,将人类智能整合到自动驾驶中。系统包括多功能工具库、认知记忆和推理引擎,实现类人的推理和决策能力。在nuScenes基准测试中,Agent-Driver性能显著超越现有方法,并展现出优秀的可解释性和少样本学习能力。这一项目为自动驾驶领域提供了新的研究方向,向实现人类级别驾驶迈进。
gta - 几何感知注意力机制增强多视图Transformer性能
GTAGithub几何感知注意力多视图Transformer开源项目神经渲染计算机视觉
GTA是一种创新的几何感知注意力机制,旨在提升多视图Transformer的表达能力。这项技术不仅适用于新视角合成和3D场景重建等多视图任务,还可应用于图像生成等2D任务。项目提供了GTA在CLEVR-TR和MSN-Hard数据集上的官方实现代码,并展示了其在ImageNet图像生成中的应用。通过整合几何信息,GTA使Transformer更有效地处理3D空间关系,从而显著提高多视图任务的性能表现。
Autonomous-Driving-in-Carla-using-Deep-Reinforcement-Learning - CARLA仿真中的深度强化学习自动驾驶模型
CARLAGithubPPO变分自编码器开源项目深度强化学习自动驾驶
该项目在CARLA仿真环境中,使用深度强化学习方法进行自动驾驶训练。通过结合PPO算法和变分自编码器(VAE),加速学习并提高驾驶决策能力。项目采用Python和PyTorch构建,重点在于自动驾驶和障碍物回避的持续学习。对于推动自动驾驶技术和决策效率研究具有显著意义。
CoDA_NeurIPS2023 - 创新3D目标检测框架实现开放词汇表任务
CoDAGithub开放词汇3D目标检测开源项目深度学习神经网络计算机视觉
CoDA是一个开源的开放词汇表3D目标检测框架,通过协作式新颖框发现和跨模态对齐技术提高对未见类别的检测能力。该项目支持ScanNet和SUN RGB-D数据集,提供完整的代码、预训练模型和数据集。CoDA的创新方法在NeurIPS 2023发表,为3D场景理解研究提供了新的思路。项目基于PyTorch开发,并提供详细的安装和使用指南。
End-to-end-Autonomous-Driving - 端到端自动驾驶研究资源综合集成
CARLAGithub开源项目机器学习端到端自动驾驶计算机视觉
该项目整合端到端自动驾驶研究资源,涵盖学习材料、研讨会、论文集、基准测试、数据集及竞赛信息。旨在为自动驾驶研究提供全面参考,推动技术发展。内容定期更新,欢迎社区参与贡献。
BEV-Planner - 端到端自动驾驶中车辆状态依赖分析与评估方法创新
Githubego状态开源项目开环评估端到端模型自动驾驶路径规划
BEV-Planner项目研究端到端自动驾驶中的关键问题。研究发现在nuScenes数据集上,模型过度依赖车辆状态而忽视感知信息。项目提出新的评估指标和基准方法,全面评估规划质量。研究结果质疑当前自动驾驶研究方向,建议重新审视现有方法。项目为自动驾驶领域提供新思路,包括道路遵循性评估和简单但有效的基线模型。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

稿定AI

稿定设计 是一个多功能的在线设计和创意平台,提供广泛的设计工具和资源,以满足不同用户的需求。从专业的图形设计师到普通用户,无论是进行图片处理、智能抠图、H5页面制作还是视频剪辑,稿定设计都能提供简单、高效的解决方案。该平台以其用户友好的界面和强大的功能集合,帮助用户轻松实现创意设计。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号