Project Icon

YOLOv8-multi-task

轻量级神经网络实现实时多任务目标检测与分割

YOLOv8-multi-task项目提出了一种轻量级神经网络模型,可同时执行目标检测、可行驶区域分割和车道线检测等多任务。该模型使用自适应拼接模块和通用分割头设计,在提高性能的同时保持高效率。实验表明,该模型在推理速度和可视化效果方面优于现有方法,适用于需要实时处理的多任务场景。

rknn-cpp-Multithreading - RK3588/RK3588S多线程NPU推理加速框架
GithubNPURK3588RKNNYOLOv5多线程开源项目
rknn-cpp-Multithreading项目提供了一个针对RK3588/RK3588S的多线程NPU推理加速框架。通过线程池异步操作rknn模型,显著提高了NPU使用率和推理速度。项目优化了YOLOv5s模型,采用ReLU激活函数,进一步提升了性能。提供了详细的使用说明和不同线程数下的性能测试结果,便于用户参考和应用。
quickai - 简化复杂机器学习模型的实验过程
GithubPythonQuickAIYOLO卷积神经网络开源项目机器学习
QuickAI 是一个 Python 库,简化了前沿机器学习模型的实验流程。支持 EfficientNet、VGG、ResNet 等图像分类模型和 GPT-NEO、Distill BERT 等自然语言处理模型。只需1-2行代码即可完成模型训练和评估,兼容 TensorFlow 和 PyTorch,并提供 Docker 容器便于环境配置。适用于各水平用户,助力快速推进机器学习项目。
End-to-end-Autonomous-Driving - 端到端自动驾驶研究资源综合集成
CARLAGithub开源项目机器学习端到端自动驾驶计算机视觉
该项目整合端到端自动驾驶研究资源,涵盖学习材料、研讨会、论文集、基准测试、数据集及竞赛信息。旨在为自动驾驶研究提供全面参考,推动技术发展。内容定期更新,欢迎社区参与贡献。
TopoNet - 自动驾驶场景拓扑推理的图神经网络方法
GithubOpenLane-V2TopoNet图神经网络场景拓扑推理开源项目自动驾驶
TopoNet是一个端到端框架,用于推理自动驾驶场景中车道中心线和交通元素间的连接关系。该框架采用图神经网络和知识图结构,整合异构特征并加强特征交互。TopoNet在OpenLane-V2数据集上展现了领先性能,为自动驾驶场景拓扑推理树立新标准。项目提供开源代码和预训练模型,促进自动驾驶研究发展。
Open3D-ML - Open3D 的扩展,用于处理 3D 机器学习任务
3D机器学习GithubOpen3D-MLPyTorchTensorFlow开源项目语义分割
Open3D-ML基于Open3D库,扩展了3D机器学习工具,支持语义点云分割和目标检测等应用。提供预训练模型和训练管道,兼容TensorFlow和PyTorch框架,易于集成到现有项目中。同时,提供数据可视化等通用功能,覆盖多种数据集和算法,提高3D数据处理效率和效果。
EFG - 高效灵活的深度学习框架支持多项计算机视觉任务
3D目标检测EFGGithub开源项目深度学习框架目标跟踪计算机视觉
EFG是一个高效、灵活且通用的深度学习框架,采用最小化设计。该框架支持2D和3D目标检测、全景分割等多种计算机视觉任务,并在Waymo和nuScenes等数据集上展现优异性能。EFG集成了多个最新研究成果,如TrajectoryFormer和ConQueR,为3D目标检测和跟踪领域提供创新解决方案。研究人员可利用EFG的项目模板探索各种研究主题。
Multi-Task-Transformer - 场景理解多任务变压器模型 TaskPrompter和InvPT
GithubTransformer场景理解多任务学习开源项目深度学习计算机视觉
Multi-Task-Transformer项目提供两种场景理解多任务变压器模型:TaskPrompter和InvPT。TaskPrompter利用空间-通道多任务提示进行密集场景理解,InvPT采用倒金字塔架构。这些模型在单目深度估计和3D目标检测等任务中表现出色,并在ICLR2023和ECCV2022会议上发表。项目开源代码和预训练模型,支持多种计算机视觉应用。
segment-anything-fast - 高性能图像分割模型加速框架
AI模型加速GithubPyTorchSegment Anything图像分割开源项目推理优化
segment-anything-fast是基于Facebook's segment-anything的优化版本,专注于提高图像分割模型的性能。通过整合bfloat16、torch.compile和自定义Triton内核等技术,该项目显著提升了模型推理速度。它支持多种优化方法,如动态int8对称量化和2:4稀疏格式,同时保持了简单的安装和使用流程。这使得开发者能够轻松替换原始segment-anything,实现更高效的图像分割。该优化框架适用于需要实时或大规模图像分割处理的应用,如自动驾驶、医疗影像分析或视频编辑等领域,可显著提高处理效率和资源利用率。
GiT - 通用视觉Transformer模型实现多任务统一
GiTGithub多任务学习开源项目视觉Transformer计算机视觉语言接口
GiT是一种通用视觉Transformer模型,采用单一ViT架构处理多种视觉任务。该模型设计简洁,无需额外视觉编码器和适配器。通过统一语言接口,GiT实现了从目标检测到图像描述等多任务能力。在多任务训练中,GiT展现出任务间协同效应,性能超越单任务训练且无负迁移。GiT在零样本和少样本测试中表现优异,并随模型规模和数据量增加而持续提升性能。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号