Project Icon

3D-OVS

无需标注的开放词汇3D场景分割新方法

3D-OVS是一种创新的弱监督3D开放词汇分割方法,仅依靠文本描述即可实现3D场景的精准分割。该技术融合TensoRF重建与CLIP特征提取,通过提示工程和DINO特征优化,提高了3D场景的语义理解能力。这一方法将3D视觉与自然语言处理有机结合,为多个领域的应用提供了新的可能性。

openscene - 零样本3D场景理解和任务执行工具
3D场景理解CVPR 2023GithubOpenScene开源项目语义分割零样本
OpenScene是一个实时交互的3D场景理解工具,支持使用开放词汇进行查询。用户可输入任意短语,系统会自动高亮相应区域。支持多种数据集和预处理选项,可执行零样本3D语义分割、稀有物体搜索和基于图像的3D物体检测。其特点包括无需GPU运行、支持多视角特征融合和模型蒸馏。所有代码和数据集均可在GitHub获取,适用于广泛的研究和开发应用。
OpenShape_code - 革新3D形状表示方法 实现开放世界理解
3D形状表示GithubOpenShape多模态检索开放世界理解开源项目零样本分类
该项目开发了新型3D形状表示方法,通过大规模训练实现开放世界理解。这一技术在零样本3D形状分类、检索和语义理解任务中表现优异,支持多模态交互并能进行点云描述和图像生成。提供的在线演示、预训练模型和训练代码为3D视觉研究与应用拓展了新方向。
Open3D-PointNet2-Semantic3D - 使用Open3D和PointNet++进行高效3D数据处理与语义分割
GithubOpen3DPointNet++Semantic3D开源项目机器学习语义分割
该项目演示了如何使用Open3D与PointNet++进行3D点云的加载、预处理及语义分割,提供了高效的点云操作方法和训练预测流程,为Semantic3D数据集提供了简洁优化的基准实现,适用于深度学习应用的快速开发。
Open3D-ML - Open3D 的扩展,用于处理 3D 机器学习任务
3D机器学习GithubOpen3D-MLPyTorchTensorFlow开源项目语义分割
Open3D-ML基于Open3D库,扩展了3D机器学习工具,支持语义点云分割和目标检测等应用。提供预训练模型和训练管道,兼容TensorFlow和PyTorch框架,易于集成到现有项目中。同时,提供数据可视化等通用功能,覆盖多种数据集和算法,提高3D数据处理效率和效果。
Awesome-Open-Vocabulary-Semantic-Segmentation - 开放词汇语义分割研究成果汇总
CLIPGithub开放词汇开源项目深度学习计算机视觉语义分割
这是一个汇总开放词汇语义分割领域研究成果的项目。内容涵盖全监督、弱监督和无需训练等多种方法,同时收录零样本语义分割、指代图像分割和开放词汇目标检测等相关任务的论文。项目旨在为研究者提供该领域的最新进展概览。
Real3D - 基于真实图像的大规模3D重建模型
3D重建GithubReal3D开源项目深度学习自监督学习计算机视觉
Real3D是一种创新的大规模3D重建模型系统,首次实现了使用单视图真实图像进行训练。该系统采用自训练框架,结合3D/多视图合成数据和单视图真实图像,并引入两种无监督损失函数,实现像素和语义层面的模型监督。在包含真实和合成数据、域内和域外形状的四种评估场景中,Real3D均显著优于现有方法。
SegmentAnything3D - Segment Anything技术在3D场景中的创新应用
3D感知GithubSegment Anything 3D图像分割开源项目点云处理计算机视觉
SAM3D项目将Segment Anything技术扩展到3D感知领域,通过将2D图像分割信息转移到3D空间,为3D场景理解提供新思路。该项目结合SAM生成掩码、点云合并和区域合并等技术,实现2D到3D的有效转换。SAM3D不仅拓展了计算机视觉的应用范围,也为3D场景分析和理解开辟了新的研究方向。
DyCo3D - 动态卷积实现鲁棒3D点云实例分割
3D点云实例分割DyCo3dGithub动态卷积开源项目深度学习计算机视觉
DyCo3D提出了一种新型3D点云实例分割方法,采用动态卷积技术处理实例尺度变化问题。该方法结合大范围上下文信息和轻量级Transformer,在ScanNetV2和S3DIS数据集上取得领先结果,推理速度提升25%以上。DyCo3D简化了传统bottom-up方法的复杂流程,对超参数不敏感,为3D点云实例分割领域提供了高效且鲁棒的新方案。
Uni3D - 突破性统一3D表示学习框架
3D表示GithubUni3D开源项目点云零样本分类预训练
Uni3D是一个创新的3D预训练框架,致力于大规模3D表示学习。该框架采用2D预训练模型初始化,通过端到端训练实现3D点云与图像-文本特征对齐。Uni3D凭借简洁架构和高效预训练,成功将模型规模扩展至10亿参数,在多项3D任务中取得突破性进展,展现了将2D深度学习优势迁移至3D领域的巨大潜力。
LL3DA - 3D环境下的多模态语言和视觉互动助手
3D环境3D语言模型GithubLL3DA开源项目点云视觉交互
LL3DA是一种大型语言3D助手,能够在复杂的3D环境中响应视觉和文本交互。现有的多模态模型在3D场景理解中的挑战使得LL3DA采用点云直接作为输入,从而减少计算负担并提升性能。实验结果表明,LL3DA在3D密集描述和3D问答任务上优于其他3D视觉语言模型。其开源代码和预训练模型权重允许用户训练定制模型,并进一步拓展到更大规模的3D视觉语言基准上。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号