Project Icon

morl-baselines

多目标强化学习算法库 支持单策略和多策略实现

MORL-Baselines是一个多目标强化学习算法库,提供多种PyTorch实现。该项目遵循MO-Gymnasium API,支持单策略和多策略算法,适用于SER和ESR标准。特点包括自动性能报告、代码规范和自动测试。实现了GPI-LS、MORL/D等多种算法,支持连续和离散观察/动作空间,为MORL研究和基准测试提供有力支持。

MO-Gymnasium - 标准化多目标强化学习环境和算法开发平台
GithubMO-GymnasiumPython库多目标强化学习开源项目环境API算法开发
MO-Gymnasium是一个开源Python库,为多目标强化学习(MORL)算法提供标准化开发和比较平台。它基于Gymnasium API,提供返回向量化奖励的环境集合,包括MORL文献中的环境和经典环境的多目标版本。该库支持简单的环境创建和交互,并提供LinearReward包装器实现奖励函数标量化。MO-Gymnasium采用严格的版本控制,保证实验可重复性,是MORL研究和基准测试的理想工具。
stable-baselines3 - 增强型PyTorch强化学习算法,实现可靠性与自定义支持
GithubPyTorchRL算法Stable Baselines3开源项目强化学习稳定基线
实现可靠的PyTorch强化学习算法,方便研究和工业用户复制和优化新思路。支持自定义环境与策略,提供统一接口,适合项目开发和性能对比。涵盖A2C、PPO、DQN等算法,包含迁移指南和在线文档,适用于有强化学习基础的用户。
Safe-Reinforcement-Learning-Baselines - 综合安全强化学习研究资源库
GithubSafe Reinforcement Learning基准测试安全强化学习开源项目环境算法
Safe-Reinforcement-Learning-Baselines项目汇集了安全强化学习领域的多种基线算法和基准环境,涵盖单智能体和多智能体场景。该资源库提供环境支持、算法实现、相关调查、学术论文和教程等全面内容,为研究人员提供系统性的安全强化学习工具和参考资料,促进该领域的持续发展和创新。
BenchMARL - 多智能体强化学习的标准化基准测试平台
BenchMARLGithubTorchRL多智能体强化学习开源项目环境集成算法比较
BenchMARL是一个专注于多智能体强化学习(MARL)的开源训练库,旨在提供标准化接口实现不同算法和环境的可重复性比较。它基于TorchRL后端,支持高效实现和灵活配置,可轻松集成新算法和环境。BenchMARL提供了统一的评估体系,支持marl-eval兼容的数据报告,为MARL研究提供了可靠的基准测试平台。
rl-baselines3-zoo - Stable Baselines3 强化学习代理的训练框架,包括超参数优化和预训练代理
GithubRL Baselines3 ZooStable Baselines3开源项目强化学习训练框架超参数调整
RL Baselines3 Zoo提供一个灵活的训练框架支持众多增强学习算法和环境。此框架便于进行算法基准测试、调优以及AI模型的训练和评估。已集成200多个预训练智能体,并配备全面的文档和安装指南,适合科研和开发使用。
rl-baselines-zoo - 一站式强化学习训练与优化集成环境
GithubRL Baselines ZooStable-Baselines3开源项目强化学习训练代理超参数调优
RL Baselines Zoo提供一个多元化的强化学习代理集合,支持用户通过简易界面进行代理训练和算法评测。项目含多个环境和算法,带有经过优化的默认超参数,适用于教育和研究用途。注意:此库已停止维护,建议使用更新的RL-Baselines3 Zoo版本。
stable-baselines3-contrib - 实验性强化学习算法和工具
GithubGym WrappersStable-Baselines3rl算法sb3-contrib开源项目文档
提供最新的实验性强化学习算法和工具,保持稳定基线风格和文档,适用于更广泛的实际应用需求。包括增强随机搜索(ARS)和量化回归DQN(QR-DQN)等算法,以及适用于Gym环境的包装器。适合需要超越主存储库限制且仍需高可靠性的用户。
rl - 开源强化学习库TorchRL
TorchRL是专为PyTorch设计的开源强化学习库,提供高效的研究性能。它具备完整Python接口、模块化、定制化及强大扩展性,配备详尽文档和测试,确保用户快速上手且使用可靠。此外,TorchRL包括多种可复用功能,适用于成本、回报处理和数据管理,是开展强化学习研究与应用的理想工具。
openrl - 综合性强化学习平台,支持多任务训练
GithubOpenRLPyTorch多智能体开源项目强化学习自然语言处理
OpenRL 是一款基于 PyTorch 的开源强化学习研究框架,支持单代理、多代理、离线强化学习、自我对弈及自然语言处理任务。框架提供统一接口、训练加速方法和多种深度学习模型支持,兼容 Gymnasium、MuJoCo、StarCraft II 等多种环境。同时,OpenRL 还支持用户自定义训练模型、奖励模型和环境配置,并提供中英文文档。
LibMTL - 基于PyTorch的多任务学习开源库,支持多种架构和优化策略
GithubLibMTLPyTorch多任务学习开源库开源项目算法
LibMTL是一个基于PyTorch的开源库,专为多任务学习(MTL)设计。它提供了一致的代码库和评估流程,支持多种架构和优化策略,涵盖多个领域的基准数据集。LibMTL采用模块化设计,允许用户灵活添加自定义组件或调整现有算法,方便开发新策略或应用于新场景。详尽的文档确保不同经验水平的开发者都能轻松使用。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

稿定AI

稿定设计 是一个多功能的在线设计和创意平台,提供广泛的设计工具和资源,以满足不同用户的需求。从专业的图形设计师到普通用户,无论是进行图片处理、智能抠图、H5页面制作还是视频剪辑,稿定设计都能提供简单、高效的解决方案。该平台以其用户友好的界面和强大的功能集合,帮助用户轻松实现创意设计。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号