Project Icon

morl-baselines

多目标强化学习算法库 支持单策略和多策略实现

MORL-Baselines是一个多目标强化学习算法库,提供多种PyTorch实现。该项目遵循MO-Gymnasium API,支持单策略和多策略算法,适用于SER和ESR标准。特点包括自动性能报告、代码规范和自动测试。实现了GPI-LS、MORL/D等多种算法,支持连续和离散观察/动作空间,为MORL研究和基准测试提供有力支持。

AI-Optimizer - 涵盖从无模型到基于模型,从单智能体到多智能体的多种算法的多功能深度强化学习平台
AI-OptimizerGithub多智能体强化学习开源项目深度强化学习离线强化学习自监督学习
AI-Optimizer是一款多功能深度强化学习平台,涵盖从无模型到基于模型,从单智能体到多智能体的多种算法。其分布式训练框架高效便捷,支持多智能体强化学习、离线强化学习、迁移和多任务强化学习、自监督表示学习等,解决维度诅咒、非平稳性和探索-利用平衡等难题,广泛应用于无人机、围棋、扑克、机器人控制和自动驾驶等领域。
awesome-multi-modal-reinforcement-learning - 多模态强化学习前沿论文与研究资源汇总
Github多模态强化学习开源项目表征学习视觉强化学习语言模型预训练
本项目收集了多模态强化学习(MMRL)领域的前沿研究论文和资源。内容涵盖视觉、语言及其结合的MMRL方法,包括ICLR、NeurIPS、ICML等顶级会议论文,以及预训练、表征学习、视觉推理等热点主题。项目持续追踪最新进展,为MMRL研究提供全面参考。
Deep_reinforcement_learning_Course - 掌握Stable Baselines3、RL Baselines3 Zoo、Sample Factory和CleanRL等库的使用的深度强化学习课程
AI训练Deep Reinforcement LearningGithubHugging FaceRL库开源项目训练代理
免费深度强化学习课程,结合理论与实践,掌握Stable Baselines3、RL Baselines3 Zoo、Sample Factory和CleanRL等库的使用。训练智能体在SnowballFight、Huggy the Doggo、MineRL(Minecraft)、VizDoom(Doom)及经典环境(如Space Invaders、PyBullet)中运行。发布和下载社区智能体,并参与挑战与其他团队及AI对抗。
Gymnasium-Robotics - 基于Gymnasium和MuJoCo的强化学习机器人环境库
GithubGymnasiumMuJoCoPython开源项目强化学习机器人环境
Gymnasium-Robotics是一个强化学习机器人环境库,基于Gymnasium API和MuJoCo物理引擎开发。它提供多种机器人环境,包括Fetch机械臂、Shadow灵巧手等,并支持多目标API。该项目还集成了D4RL环境,如迷宫导航和Adroit机械臂。Gymnasium-Robotics为研究人员提供丰富的机器人操作任务,有助于开发和测试强化学习算法。
Popular-RL-Algorithms - 流行强化学习算法的PyTorch实现与评估
GithubPyTorch开源代码开源项目强化学习性能对比算法实现
Popular-RL-Algorithms项目实现了SAC、DDPG、TD3、PPO等多种流行强化学习算法的PyTorch版本。项目提供了算法的多种实现以便比较,并包含奖励归一化、多进程训练等实用技巧。通过在OpenAI Gym环境中的性能展示,为强化学习研究和应用提供了参考。
MultiBench - 多模态学习的多尺度标准基准
BenchmarkGithubMultiBenchMultimodal学习开源项目数据集深度学习
MultiBench是一个系统化、统一的大规模基准,用于多模态表征学习,覆盖15个数据集、10种模态、20个预测任务和6个研究领域。它提供自动化的端到端机器学习管道,简化数据加载、实验设置和模型评估,确保在真实世界中的适用性和鲁棒性。
PARL - 灵活高效的强化学习开源框架
GithubPARL分布式训练并行计算开源项目强化学习深度学习
PARL是一个开源的强化学习框架,专注于提供高效、灵活的开发环境。该框架具有良好的可复现性、大规模训练支持、高可重用性和易扩展性。PARL基于Model、Algorithm和Agent三个核心抽象,并提供简洁的分布式训练API。框架支持DQN、DDPG、SAC等多种算法实现,在多个强化学习挑战赛中表现出色。PARL适用于各类复杂任务的智能体训练,为强化学习研究和应用提供了有力工具。
soft-moe-pytorch - PyTorch 实现的软专家混合模型框架
GithubPytorchSoft MoE专家混合开源项目深度学习神经网络
soft-moe-pytorch 项目实现了基于 PyTorch 的软专家混合 (Soft MoE) 模型。该模型支持非自回归编码器,可用于文本到图像等任务。项目特点包括灵活设置专家数量、动态分配插槽,以及与 Transformer 架构兼容。这一工具为深度学习研究和开发提供了高效、可扩展的 MoE 模型实现,有助于提升模型性能。
nnabla-rl - 深度强化学习库,基于Neural Network Libraries构建
GPU加速GithubPythonnnablaRL开源项目深度强化学习神经网络库
nnabla-rl是基于Neural Network Libraries构建的深度强化学习库,适用于研究、开发和生产环境。该库提供简洁的Python API,集成多种经典和前沿强化学习算法,实现在线与离线训练的灵活切换。nnabla-rl支持通过nnabla-browser可视化训练过程,安装便捷,兼容GPU加速,并提供交互式示例便于快速上手。
rsl_rl - 面向GPU的高效强化学习框架
GPU运行GithubPPO算法RSL RL开源项目强化学习
rsl_rl是一个专为GPU运行优化的强化学习框架,目前实现了PPO算法,未来将支持更多算法。框架提供详细的安装指南,集成多种日志工具,并采用严格的代码质量管理。它在Legged-Gym和Orbit等机器人仿真环境中得到应用,为强化学习研究和开发提供了高效工具。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号