Project Icon

MedNeXt

基于ConvNeXt的3D医学图像分割神经网络架构

MedNeXt是一种基于ConvNeXt设计的神经网络架构,专门用于3D医学图像分割。它针对稀疏标注的医学数据集进行了优化,提供灵活的使用方式。该项目包含完整模型和独立模块,可集成到其他流程中。MedNeXt基于nnUNet框架,支持梯度检查点等功能,适用于低内存设备训练大型模型。项目还提供了多种预定义架构大小和内核尺寸的选项。

neuralangelo - 从图像重建高精度3D表面模型的神经网络技术
3D重建GithubNeuralangelo开源项目机器学习神经网络计算机视觉
Neuralangelo是一个开源项目,专注于从图像重建高精度3D表面模型。该项目利用深度学习方法,提供了完整的代码实现,包括数据预处理、模型训练和网格提取功能。Neuralangelo在复杂场景重建中表现优异,适用于计算机视觉和图形学研究。项目文档包含详细使用说明和常见问题解答,便于研究人员快速上手。
model-zoo - MONAI Model Zoo 提供医学影像模型集合
GithubMONAI Model Zoo医学影像模型开源项目模型下载模型使用贡献指南
MONAI Model Zoo是一个医学影像模型集合,提供MONAI Bundle格式模型。项目包含多种医学影像模型,支持快速下载和使用。除了模型资源,还提供模板bundles,便于开发自定义模型。每个bundle都有详细使用说明和许可条件。MONAI Model Zoo遵循Apache许可证,为医学影像研究和应用提供了有价值的资源。
pix2pix3D - 基于2D标签图的3D感知条件图像生成模型
3D生成模型Githubpix2pix3D开源项目条件图像合成神经辐射场语义标签
pix2pix3D是一个3D感知条件生成模型,可以根据2D标签图(如分割图或边缘图)生成逼真的3D对象图像。该模型结合神经辐射场技术,能从多个视角渲染图像。通过同步生成图像和对应的标签图,pix2pix3D实现了交互式3D编辑功能,为可控的3D感知图像合成开辟了新途径。
MedLLMsPracticalGuide - 医疗大语言模型的发展现状与应用前景
Github人工智能医疗医学知识库医疗决策支持医疗大语言模型医疗应用开源项目
该项目提供了医疗大语言模型(Medical LLMs)的综合资源清单,基于一篇全面的综述论文。内容涵盖医疗LLMs的基本原理、构建方法、应用场景和面临的挑战,包括构建流程、医疗数据利用、生物医学任务、临床实践等多个方面。项目为医疗LLMs的研究与开发提供了宝贵的见解和实用指南,有助于推动这一前沿技术在医疗领域的创新应用。
nnDetection - 自适应医学目标检测框架
GithubnnDetection医学目标检测开源项目深度学习自动配置计算机辅助诊断
nnDetection是一个自适应医学目标检测框架,能够自动配置以适应不同医学检测任务。该框架在ADAM和LUNA16等公共基准测试中展现出与顶尖方法相当或更优的性能。项目支持Docker容器和本地安装,提供多个医学数据集的处理指南,便于复现实验结果和集成新数据集。nnDetection为医学目标检测研究提供了标准化接口和自动化工作流程。
DyCo3D - 动态卷积实现鲁棒3D点云实例分割
3D点云实例分割DyCo3dGithub动态卷积开源项目深度学习计算机视觉
DyCo3D提出了一种新型3D点云实例分割方法,采用动态卷积技术处理实例尺度变化问题。该方法结合大范围上下文信息和轻量级Transformer,在ScanNetV2和S3DIS数据集上取得领先结果,推理速度提升25%以上。DyCo3D简化了传统bottom-up方法的复杂流程,对超参数不敏感,为3D点云实例分割领域提供了高效且鲁棒的新方案。
Awesome-Diffusion-Models-in-Medical-Imaging - 汇总医疗影像中扩散模型的前沿研究与应用
Anomaly DetectionDiffusion ModelsGithubMedical ImagingSegmentationSurvey Papers开源项目
本页面汇集了关于医疗影像扩散模型的精彩文章,包括综合调查、挑战报告以及多种应用领域的最新研究成果。这里汇集了关于异常检测、去噪、分割、图像生成和文本到图像转换等方面的详尽文献。这些内容展示了扩散模型在医学图像分析中的重要性,还覆盖了在皮肤病变分割、脑图像异常检测等具体应用中的最新进展。欢迎社区参与和贡献,共同推动这一领域的发展。
breast_cancer_classifier - 深度学习模型助力乳腺癌筛查增强放射科医师诊断能力
Deep Neural NetworksGithubPyTorchbreast cancermammographyradiologists开源项目
该开源项目提供基于深度学习的预训练模型,能够提升乳腺癌筛查的准确性。项目包含仅图像和图像+热图两种模型,适用于标准视图的乳腺X光检查,支持GPU加速,使用Python和PyTorch实现,提供详细的示例数据和预测结果。
Uni3D - 突破性统一3D表示学习框架
3D表示GithubUni3D开源项目点云零样本分类预训练
Uni3D是一个创新的3D预训练框架,致力于大规模3D表示学习。该框架采用2D预训练模型初始化,通过端到端训练实现3D点云与图像-文本特征对齐。Uni3D凭借简洁架构和高效预训练,成功将模型规模扩展至10亿参数,在多项3D任务中取得突破性进展,展现了将2D深度学习优势迁移至3D领域的巨大潜力。
deep-learning-colonoscopy - 深度学习在结肠镜息肉检测和分类中的应用进展
Github医学影像开源项目息肉分类息肉检测深度学习结肠镜检查
本项目汇集了深度学习在结肠镜息肉检测和分类领域的前沿研究。内容涵盖息肉检测定位、分类及同步检测分类三大方向,并提供数据集信息、深度学习架构和性能指标等技术细节。这些研究成果有望提升结肠癌筛查的准确度和效率,推动相关临床应用的发展。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号