Project Icon

MMStar

大型视觉语言模型评估的新标准

MMStar是一个创新的多模态评估基准,包含1500个精选的视觉关键样本。它解决了现有评估中的视觉冗余和数据泄露问题,提高了多模态性能评估的准确性。MMStar涵盖6大核心能力和18个细分维度,每个核心能力均衡分配250个样本。项目提供评估工具、数据集和在线排行榜,为视觉语言模型研究指明新方向。

VLMEvalKit - 开源的大型视觉语言模型评估工具包
GithubVLMEvalKit多模态数据集大型视觉语言模型开源开源项目评估工具包
VLMEvalKit是一款开源的大型视觉语言模型评估工具包,支持即插即用的评估操作,无需繁重的数据准备。该工具包支持多种顶级数据库和最新模型测试,并为用户提供精确匹配和基于LLM的答案提取两种评估结果。有效工具,帮助专业人员和研究者评估模型性能。
MMDialog - 推进多模态开放域对话研究的大规模数据集
GithubMMDialog多模态对话数据集大规模数据开放域对话开源项目自然语言处理
MMDialog是一个包含丰富文本和图像信息的大规模多轮对话数据集。它提供详细的数据统计、格式说明和评估方法,适用于多模态开放域对话研究。学术研究人员可通过申请流程获取该数据集,用于非商业性研究。MMDialog为自然语言处理领域的多样化对话任务研究提供了重要资源。
Multi-Modality-Arena - 完善的多模态模型评估工具,让视觉问答更精准
GithubLVLM LeaderboardLVLM-eHubMulti-Modality ArenaOmniMedVQATiny LVLM-eHub开源项目
Multi-Modality Arena 是一个专注于评估多模态模型的开放平台,支持视觉问答任务的对比测试。平台发布了OmniMedVQA和Tiny LVLM-eHub等评估基准,涵盖广泛的视觉和语言领域。用户可以访问在线演示,参与评估项目,并利用丰富的模型和数据集资源进行性能优化。
Multimodal-AND-Large-Language-Models - 多模态与大语言模型前沿研究综述
Github人工智能多模态大语言模型开源项目机器学习视觉语言模型
本项目汇总了多模态和大语言模型领域的最新研究进展,涵盖结构化知识提取、事件抽取、场景图生成和属性识别等核心技术。同时探讨了视觉语言模型在推理、组合性和开放词汇等方面的前沿问题。项目还收录了大量相关综述和立场文章,为研究人员提供全面的领域概览和未来方向参考。
MultiBench - 多模态学习的多尺度标准基准
BenchmarkGithubMultiBenchMultimodal学习开源项目数据集深度学习
MultiBench是一个系统化、统一的大规模基准,用于多模态表征学习,覆盖15个数据集、10种模态、20个预测任务和6个研究领域。它提供自动化的端到端机器学习管道,简化数据加载、实验设置和模型评估,确保在真实世界中的适用性和鲁棒性。
Q-Bench - 评测多模态大语言模型的低层视觉能力
GithubICLR2024Q-Bench低层视觉基准测试多模态大语言模型开源项目
Q-Bench是一个评估多模态大语言模型低层视觉能力的基准测试。它通过感知、描述和评估三个领域,使用LLVisionQA和LLDescribe数据集测试模型性能。该项目采用开放式评估框架,支持研究者提交结果或模型。Q-Bench对比了开源和闭源模型的表现,并与人类专家水平进行对照,为深入理解和提升多模态AI的基础视觉处理能力提供了关键洞察。
LLaMA-VID - 支持长视频处理的多模态大语言模型
GithubLLaMA-VID多模态大语言模型开源项目视觉语言模型视频理解
LLaMA-VID是一个新型多模态大语言模型,可处理长达数小时的视频。它通过增加上下文令牌扩展了现有框架的能力,采用编码器-解码器结构和定制令牌生成策略,实现对图像和视频的高效理解。该项目开源了完整的模型、数据集和代码,为视觉语言模型研究提供了有力工具。
VideoLLaMA2 - 增强视频理解的多模态语言模型
AIGithubVideoLLaMA2多模态大语言模型开源项目视频理解
VideoLLaMA2是一款先进的视频语言模型,通过增强空间-时间建模和音频理解能力,提高了视频问答和描述任务的性能。该模型在零样本视频问答等多项基准测试中表现出色。VideoLLaMA2能处理长视频序列并理解复杂视听内容,为视频理解技术带来新进展。
SEED-Bench - 多模态大语言模型评估基准
GithubSEED-Bench人工智能基准测试多模态大语言模型开源项目评估维度
SEED-Bench是一个全面评估多模态大语言模型的基准测试。它包含28K个多项选择题,涵盖34个评估维度,包括文本和图像生成能力。该项目提供SEED-Bench-H、SEED-Bench-2-Plus等多个版本,分别针对不同评估方面。SEED-Bench为研究人员提供了一个客观比较多模态大语言模型性能的工具。
MGM - 多模态视觉语言模型的潜力挖掘与创新
AI绘图GithubMini-Gemini图像理解多模态视觉语言模型大语言模型开源项目
Mini-Gemini项目探索多模态视觉语言模型的新可能。该项目支持2B至34B规模的大语言模型,实现图像理解、推理和生成功能。基于LLaVA构建的Mini-Gemini提供完整资源,包括预训练权重、数据集和评估基准。通过双视觉编码器和patch信息挖掘等技术创新,Mini-Gemini实现了文本与图像的深度融合。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号