Project Icon

SyntheticTumors

合成肿瘤数据助力AI提升真实肿瘤分割效果

SyntheticTumors项目开发了创新策略生成合成肝脏肿瘤数据,用于训练AI模型。研究发现,使用合成肿瘤数据训练的模型在真实肿瘤分割任务中表现优于使用真实肿瘤数据训练的模型。项目提供了多个合成肿瘤示例,展示了其与真实肿瘤的视觉相似性。这种方法为医学影像分析和AI辅助诊断提供了新的研究方向。

visual-med-alpaca - 生物医学多模态AI模型实现图像理解和复杂问答
AIGithubLLMVisual Med-Alpaca多模态开源项目生物医学
Visual Med-Alpaca是一个参数高效的开源生物医学基础模型,集成了多模态能力。基于LLaMa-7B架构,该模型通过指令微调和视觉模块扩展,可执行放射影像解读和复杂临床问答等任务。仅需一张消费级GPU即可运行,为生物医学领域提供了灵活高效的AI研究工具。该项目仅供学术研究使用。
Awesome-Medical-Large-Language-Models - 医疗大语言模型前沿进展汇总
AI医疗Github人工智能医疗大语言模型开源项目生物医学AI自然语言处理
项目汇总医疗健康领域最新大型语言模型,涵盖谷歌、DeepMind、哈佛等机构的Med-Gemini、AMIE、Meditron等模型。提供模型信息、代码链接和引用数据,为医疗AI研究提供重要参考。研究人员和开发者可借此了解医疗AI最新发展动态。
AI-generated_images_detector - 高精度AI生成图像检测模型,适用于图像分类任务
AI-generated_images_detectorGithubHuggingface准确率图像分类开源项目模型训练和评估数据
该高精度AI生成图像检测模型专注于图像分类,适用于imagefolder数据集验证。模型训练后达到了0.9736的准确率,能够有效区分生成与真实图像。通过transformers库中的pipeline进行推理,只需将图像传递给模型即可获得分类结果,适用于对图像分类精度要求较高的应用,能够有效提升AI生成内容的识别能力。
Awesome-Implicit-Neural-Representations-in-Medical-imaging - 隐式神经表示在医学影像中的应用研究综述
Github分割医学成像图像重建开源项目神经隐式表示配准
该项目汇集了86篇关于隐式神经表示在医学影像领域应用的研究论文,时间跨度从2021年至2023年。涵盖图像重建、分割、配准和神经渲染等多个方向。项目提供论文列表、代码链接及相关资源,便于研究者快速获取信息。同时收录了一篇发表于arXiv的综述文章,对医学影像中隐式神经表示的应用进行了全面对比分析。
MedicalGPT - 优化医疗GPT模型,提升医疗对话系统的响应与精确性
GithubMedicalGPT医患对话医疗大模型开源项目强化学习微调
MedicalGPT项目采用多阶段方法如增量预训练、精细微调及奖励建模强化学习,优化医疗GPT模型,增强医疗对话与问答系统的性能。模型以人类反馈为基础,通过直接偏好优化和强化学习策略,调整生成对话的质量与人类偏好的契合度,提供科学准确的医疗咨询,项目持续接入先进的医疗语言处理技术,应对医疗领域的需求变化。
HuatuoGPT-Vision-7B - 融合视觉知识的医疗多模态语言模型助力诊断
GithubHuatuoGPT-VisionHuggingfacePubMedVision医疗应用图像识别多模态大语言模型开源项目模型
HuatuoGPT-Vision-7B是基于Qwen2-7B和LLaVA-v1.5架构的多模态医疗语言模型。该模型利用PubMedVision数据集训练,将医学视觉知识融入多模态LLM中,能同时处理文本和图像输入。开源代码可从GitHub获取,便于模型部署和使用。HuatuoGPT-Vision-7B在医疗诊断、图像分析等领域展现出潜力,为医疗应用提供了新的解决方案。
syn-rep-learn - 探索合成图像在视觉表示学习中的应用
Github人工智能合成数据学习图像生成模型开源项目深度学习视觉表示学习
Syn-Rep-Learn 项目研究合成图像在视觉表示学习中的应用。该项目包括三个主要研究方向:StableRep 探索文本到图像模型生成的合成图像在视觉表示学习中的作用,Scaling 分析合成图像在模型训练中的扩展规律,SynCLR 比较从模型和实际数据学习视觉的效果。这些研究为计算机视觉和机器学习领域提供了新的视角。
tutorials - 涵盖2D和3D分类、分割、回归及配准任务实例MONAI教程
2D分割3D分割GithubJupyter NotebookMONAIPyTorch开源项目
本资源库包含详尽的MONAI教程,涵盖2D和3D分类、分割、回归及配准任务实例。教程演示如何使用Matplotlib和Jupyter Notebook在PyTorch和MONAI中进行医学图像处理和深度学习操作,并提供Colab环境下的GPU加速指南及数据处理和问题解决方法。教程还介绍了模型部署、实验管理、联邦学习和数字病理学实例,帮助用户掌握和应用MONAI功能。
awesome-ai-art-image-synthesis - AI图像生成与提示工程工具集合
AI ArtDalle2GithubMidJourneyPrompt EngineeringStableDiffusion开源项目
全面介绍Dalle2、MidJourney、StableDiffusion等AI图像生成工具和技术。提供适合初学者和高级用户的实用工具、提示和技巧,以及丰富的资源,包括商业和开源模型、提示工程工具、后处理工具和社区支持。无论是了解如何使用这些工具生成图像,还是寻找灵感和学习资源,这里都能满足需求。
gretel-synthetics - 提供多模型支持的开源合成数据生成库
GithubGretel SyntheticsPyTorchTensorFlow合成数据开源项目生成模型
Gretel.ai 提供的 Gretel Synthetics 是一个开源合成数据生成库,支持生成高质量的合成数据,适用于机器学习和数据分析。该库主要支持 LSTM、Timeseries DGAN 和 ACTGAN 模型,并与 TensorFlow、PyTorch 和 SDV 集成。用户可以通过简易的 Python 代码进行安装和使用。文档详细介绍了使用方法,包括配置、模型训练和数据生成,并提供多个示例和教程,帮助用户快速上手。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号