Project Icon

UNetPlusPlus

嵌套U-Net架构优化医学图像分割

UNet++是一种改进的医学图像分割架构,通过重新设计跳跃连接和密集连接解码器,解决了U-Net的架构深度和连接设计问题。项目提供Keras和PyTorch实现,并获得多个第三方支持。UNet++在医学图像分割任务中表现优异,为研究提供了有力工具。该项目已在GitHub开源,欢迎研究者使用和贡献。

Open3D-PointNet2-Semantic3D - 使用Open3D和PointNet++进行高效3D数据处理与语义分割
GithubOpen3DPointNet++Semantic3D开源项目机器学习语义分割
该项目演示了如何使用Open3D与PointNet++进行3D点云的加载、预处理及语义分割,提供了高效的点云操作方法和训练预测流程,为Semantic3D数据集提供了简洁优化的基准实现,适用于深度学习应用的快速开发。
hover_net - 病理图像中细胞核分割与分类的深度学习模型
GithubHoVer-Net图像分析开源项目深度学习病理学细胞核分割
HoVer-Net是一种用于病理图像细胞核分割和分类的深度学习模型。该模型通过计算细胞核像素到质心的距离来分离聚集细胞,并利用上采样分支进行细胞核类型分类。项目提供PyTorch实现,支持模型训练、图像处理和全幻灯片分析,并包含多个预训练权重。HoVer-Net在细胞核分析任务中表现出色,为数字病理学研究提供了重要工具。
Uni3D - 突破性统一3D表示学习框架
3D表示GithubUni3D开源项目点云零样本分类预训练
Uni3D是一个创新的3D预训练框架,致力于大规模3D表示学习。该框架采用2D预训练模型初始化,通过端到端训练实现3D点云与图像-文本特征对齐。Uni3D凭借简洁架构和高效预训练,成功将模型规模扩展至10亿参数,在多项3D任务中取得突破性进展,展现了将2D深度学习优势迁移至3D领域的巨大潜力。
LViT - 结合语言和视觉Transformer的医学图像分割技术
GithubLViTVision Transformer医学图像分割开源项目数据集深度学习
LViT是一种创新的医学图像分割方法,融合了语言信息和视觉Transformer。该技术在QaTa-COV19、MosMedData+和MoNuSeg等多个数据集上展现出优异性能,大幅提升了分割精度。项目包含完整代码实现、数据准备指南、训练评估流程及详细实验结果。除常规任务外,LViT在结肠息肉和食管CT等特定领域分割中也表现出色。
Medical-SAM2 - 基于SAM2框架的2D和3D医学图像精准分割模型
GithubMedical SAM 2医学影像图像分割开源项目深度学习计算机视觉
Medical-SAM2是一个开源的医学图像分割模型,基于SAM2框架开发。该模型支持2D和3D医学图像分割,适用于REFUGE眼底图像和BTCV腹部多器官等数据集。项目提供环境配置、数据准备和训练步骤指南,以及预训练权重。Medical-SAM2为医学图像分析研究提供了实用的工具和资源。
PFENet - 优化少样本分割的先验引导特征增强网络
GithubPFENet少样本分割开源项目深度学习特征提取语义分割
PFENet作为少样本分割网络的代表作,利用先验引导特征增强技术优化分割效果。在PASCAL-5i和COCO等主流数据集上,PFENet展现出卓越性能。该开源项目包含完整实现代码、预训练模型和详细文档,为计算机视觉研究提供了宝贵资源。
awesome-transformers-in-medical-imaging - Transformer在医学影像分析中的最新应用进展
GithubTransformer分割医学图像分析开源项目深度学习计算机视觉
本项目汇总了Transformer在医学影像分析领域的最新研究成果,包括图像分割、分类、重建等多个任务。资源库按时间顺序整理相关论文和开源实现,为研究人员提供全面参考。内容定期更新,旨在促进Transformer在医学影像分析中的应用与发展。
med-seg-diff-pytorch - PyTorch实现的医学图像分割扩散模型
DDPMGithubPytorch医学图像分割开源项目扩散概率模型深度学习
med-seg-diff-pytorch是一个基于PyTorch的医学图像分割框架,采用扩散概率模型(DDPM)和特征级条件增强技术。该项目提供简易安装和使用方法,支持自定义数据集训练,并计划增加更多功能。它为医学图像分析领域提供了一个功能强大、使用灵活的开源工具。
SAM4MIS - 医学图像分割技术的前沿进展
GithubSAM人工智能医学图像分割开源项目深度学习计算机视觉
SAM4MIS项目综述了Segment Anything Model (SAM)和SAM2在医学图像分割领域的应用进展。该项目涵盖了从经验评估到方法改进的全面研究成果,为医学图像分割提供了最新见解。通过持续跟踪和汇总SAM相关研究,SAM4MIS为医学图像分析研究提供了重要参考,促进了该领域技术的创新。
objectsdf_plus - 物体组合式神经隐式表面重建技术的进阶版本
3D重建GithubObjectSDF++开源项目深度学习神经隐式表面计算机视觉
ObjectSDF++是物体组合式神经隐式表面重建技术的改进版本。该技术通过引入遮挡感知的不透明度渲染公式和物体区分正则化项,提高了实例掩码监督的利用效率,从而在场景和物体层面实现更精确的表面重建。项目提供了适用于Replica和ScanNet数据集的训练和评估代码,为3D场景理解和重建研究提供了新的工具。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号