Project Icon

NVTabular

GPU加速的大规模表格数据特征工程库

NVTabular是NVIDIA Merlin框架的组件,用于处理TB级数据集和训练深度学习推荐系统。该库利用GPU加速计算,提供高级抽象以简化代码。它可处理超出内存限制的大规模数据集,使数据科学家专注于数据操作,快速准备实验数据,并加速生产模型的数据转换过程。

MatmulTutorial - CUDA矩阵乘法内核设计与性能优化实例
CUDAGPU性能优化GithubMLIRMatMulTensorOp开源项目
MatmulTutorial项目展示了CUDA矩阵乘法的多种高性能实现,包括自定义、CuBLAS和CUTLASS等。项目通过详细的性能对比,帮助CUDA初学者理解内核设计优化。在A100 GPU上,项目实现比Relay+CUTLASS平均快1.73倍,与CuBLAS性能相当。项目还研究了MLIR生成CUDA内核,性能达到手写内核的86%。
Denvr Dataworks - 专业GPU云平台,加速AI训练与推理
AIAI工具Denvr CloudGPUNVIDIA云计算
Denvr Dataworks提供专为AI优化的云计算服务,包括高性能GPU资源、按需或专用超级计算能力,以及主流AI框架的一键部署。平台采用NVIDIA和Intel最新GPU架构,确保卓越性能和可扩展性。通过简化AI开发和运营流程,Denvr Dataworks为各类AI项目提供高效、灵活的云计算解决方案。
TransformerEngine - 用于在 NVIDIA GPU 上加速 Transformer 模型的库
FP8GithubHopper GPUNVIDIATransformer Engine开源项目深度学习
Transformer Engine是NVIDIA推出的一个库,专门用于在其GPU上加速Transformer模型。该库支持8位浮点(FP8)精度,使训练和推理性能大幅提升的同时,内存使用降低。TE提供了一系列优化的构建模块和混合精度API,适用于各种流行的深度学习框架,保证精度不受影响。通过与主流大型语言模型库的集成,简化了FP8支持的实现,使Transformer模型的训练和推理更加高效和便捷,适用于多种NVIDIA GPU架构。
Megatron-LM - 优化GPU训练技术 加速大规模Transformer模型
GPU优化GithubMegatron-CoreMegatron-LM分布式训练大语言模型开源项目
Megatron-LM框架利用GPU优化技术实现Transformer模型的大规模训练。其Megatron-Core组件提供模块化API和系统优化,支持自定义模型训练。该项目可进行BERT、GPT、T5等模型预训练,支持数千GPU分布式训练百亿参数级模型,并提供数据预处理、模型评估和下游任务功能。
Arraymancer - 提供高效N维数组计算,支持CPU、CUDA和OpenCL
ArraymancerGithubNimndarray开源项目深度学习科学计算
Arraymancer是一个高效且易用的N维数组(tensor)库,支持CPU、CUDA和OpenCL,适用于科学计算、机器学习和深度学习。受Numpy和PyTorch的启发,它包含丰富的数值计算、降维、分类和回归算法。即使不使用机器学习组件也可以操作,支持OpenMP和多种BLAS/LAPACK库,并能在高速Nim编译器下显著提升开发效率。
DeepSpeed - 大模型的训练工具
AI工具AI开发AI系统技术DeepSpeed大规模训练模型压缩模型训练热门高性能计算
DeepSpeed是一个先进的深度学习优化工具库,专门设计用于简化和增强分布式训练。通过一系列创新技术,如ZeRO、3D并行处理、MoE和ZeRO-Infinity,DeepSpeed能大幅提高训练速度,同时降低成本。这些技术支持在数千GPU上扩展模型训练,并实现低延迟和高吞吐量的推理性能。DeepSpeed同时提供了先进的模型压缩技术,优化模型存储与推理效率,是大规模AI模型训练和推理的优选方案。
DeepLearningExamples - 优化深度学习训练和部署的最佳实践
CUDA-XDeep LearningGithubNGCNVIDIATensor Cores开源项目
提供最新的深度学习示例,使用NVIDIA CUDA-X软件栈在Volta、Turing和Ampere GPU上运行,确保最佳的可重复精度和性能。示例通过NGC容器注册表每月更新,包含最新的NVIDIA贡献和深度学习软件库,支持计算机视觉、自然语言处理、推荐系统、语音识别、文本到语音转换、图神经网络和时间序列预测模型。
DataFrame - 高效C++数据分析库,支持多种统计和多线程功能
C++DataFrameGithub多线程开源项目数据分析算法
DataFrame是一个高效的C++数据分析库,提供类似于Python的Pandas和R的DataFrame功能。它支持数据切片、连接、分组操作,并具备统计、金融及机器学习算法。该库特别适合处理大数据集,拥有优异的性能和多线程支持。通过多种内置算法和可添加的自定义算法,用户可以灵活分析和处理数据。DataFrame还与Polars等工具进行了性能对比,展现了其在大数据处理上的显著优势。
pytorch-frame - 模块化深度学习框架用于异构表格数据
GithubPyTorch Frame开源项目模块化框架深度学习神经网络表格数据
PyTorch Frame是一个为异构表格数据设计的深度学习框架,支持数值、分类、时间、文本和图像等多种列类型。它采用模块化架构,实现了先进的深度表格模型,并可与大型语言模型集成。该框架提供了便捷的mini-batch加载器、基准数据集和自定义数据接口,简化了表格数据的深度学习研究过程,适用于各层次研究人员。框架内置多个预实现的深度表格模型,如Trompt、FTTransformer和TabNet等,并提供与XGBoost等GBDT模型的性能对比基准。PyTorch Frame无缝集成于PyTorch生态系统,便于与其他PyTorch库协同使用,为端到端的深度学习研究提供了便利。
nccl - 优化GPU间通信的高性能库
GPU通信GithubNCCLNVIDIA并行计算开源项目深度学习
NCCL是NVIDIA开发的开源GPU通信库,为深度学习和高性能计算优化了全归约、广播等通信模式。它在PCIe、NVLink等平台上实现高带宽,支持单节点和多节点GPU应用。NCCL可用于任意数量的GPU,适配单进程和多进程(如MPI)环境,为AI和科学计算提供高效的通信解决方案。该项目提供简易的构建安装方法和灵活的编译选项,方便开发者根据需求优化性能。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

稿定AI

稿定设计 是一个多功能的在线设计和创意平台,提供广泛的设计工具和资源,以满足不同用户的需求。从专业的图形设计师到普通用户,无论是进行图片处理、智能抠图、H5页面制作还是视频剪辑,稿定设计都能提供简单、高效的解决方案。该平台以其用户友好的界面和强大的功能集合,帮助用户轻松实现创意设计。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号