Project Icon

stylegan2-ada-pytorch

针对小数据集优化的StyleGAN2实现框架

StyleGAN2-ADA-PyTorch是StyleGAN2的PyTorch实现版本,专为小数据集训练优化。它采用自适应判别器增强技术,提高了训练稳定性。该框架保持了原TensorFlow版本的功能,同时改进了性能和兼容性。预训练模型涵盖人脸、动物等多个领域,为GAN的新应用探索奠定基础。

AnimeGANv3 - 使用AnimeGANv3实现高效的照片动画转换
AnimeGANv3Github动漫风格转换图像处理开源项目深度学习生成对抗网络
AnimeGANv3是一种新型双尾生成对抗网络,能够快速将照片转换为各种动画风格。支持的风格包括油画、可爱、8bit和素描等。最新更新提供了面部到油画风格的新模型,并且在多个平台上提供了在线演示和使用指南,适用于不同操作系统和设备。该工具不仅易于安装和使用,还支持高效推理和视频动画转换,满足爱好者和专业人士的需求。
pytorch-fid - 生成对抗网络图像质量评估工具
FIDFréchet Inception DistanceGANsGithubPyTorchTensorflow开源项目
pytorch-fid是一款用于计算生成对抗网络(GAN)样本质量的Fréchet Inception Distance(FID)分数的工具。该工具将官方的Tensorflow实现移植到PyTorch,确保相似的准确性和方便性。用户可以自由选择特征层,适应不同的数据集,还支持GPU加速和保存原始数据集的统计信息,便于进行多模型比较,适合研究和开发高质量图像生成模型。
Keras-GAN - 多种生成对抗网络(GAN)的Keras实现与教程
GithubKeras-GAN图像生成开源项目机器学习深度学习生成对抗网络
该项目包含多种Keras实现的生成对抗网络(GAN),如AC-GAN、CycleGAN、Pix2Pix等,基于研究论文,提供核心概念的实现与详细教程。欢迎社区贡献以扩展更多GAN变体。
edm2 - 优化扩散模型训练动态的创新技术
EDM2GithubPyTorch图像生成开源项目扩散模型训练动态
EDM2项目开发了改进扩散模型训练动态的新方法。通过重新设计网络层来维持激活、权重和更新幅度的期望值,该方法显著提高了模型效果。在ImageNet-512图像合成中,EDM2使FID得分从2.41提升到1.81。项目还引入了训练后调整指数移动平均(EMA)参数的技术,可精确设置EMA长度,为模型优化开辟新途径。
test-time-adaptation - 多场景计算机视觉模型在线测试时适应框架
GithubPyTorch在线测试时适应开源项目模型微调深度学习计算机视觉
该项目是一个基于PyTorch的开源在线测试时适应框架。支持CIFAR、ImageNet等多个数据集变体和预训练模型,实现了TENT、MEMO、EATA等多种测试时适应方法。框架采用模块化设计,易于扩展新方法,并提供混合精度训练功能。此外,项目还包含全面的基准测试结果和图像分割任务实验。
DCLGAN - 无监督图像转换的双重对比学习方法 实现更真实几何变换
DCLGANGithub图像转换对比学习开源项目无监督学习生成对抗网络
DCLGAN是一种新型无监督图像到图像转换模型,采用双重对比学习方法。相比CycleGAN,它能实现更真实的几何变换;相比CUT,具有更高的稳定性和性能。DCLGAN适用于多种图像转换任务,如猫狗互换和马斑马互换。项目提供了预训练模型和使用指南,便于研究者进行实验和评估。
Adan - 快速优化深度学习模型的新方法
AdanGithubPyTorch优化器开源项目梯度下降深度学习
Adan是一种新型优化算法,结合适应性学习率和Nesterov动量,旨在加速深度学习模型训练。它在计算机视觉、自然语言处理和大规模语言模型等多个领域表现优异。相比Adam和AdamW,Adan通常能使用更大的学习率,训练速度提升5-10倍,同时保持或提高模型精度。目前,Adan已被NVIDIA NeMo、Meta AI D-Adaptation等多个知名深度学习框架和项目采用。
COCOtiFaMix_v2 - AI驱动的动漫风格图像生成模型
GithubHuggingfaceStable Diffusion二次元风格人工智能绘图动漫角色开源项目文本生成图像模型
COCOtiFaMix_v2是一个基于Stable Diffusion的开源AI模型,专注于生成动漫风格图像。该模型可根据文本提示创建详细的插画,擅长呈现人物、服饰和场景元素。它支持多种视觉效果,如雨天、彩虹和花卉,适用于插画设计和游戏美术等领域。作为一个文本到图像的生成工具,COCOtiFaMix_v2为数字艺术创作提供了新的可能性。
deep-learning-v2-pytorch - 深度学习教程与项目实战指南
Deep LearningGithubPyTorch卷积神经网络开源项目生成对抗网络神经网络
本仓库提供 Udacity 深度学习 v7 纳米学位课程的相关资料,包括各种深度学习主题的教程笔记本,涉及卷积神经网络、循环神经网络和生成对抗网络等模型的实现。内容涵盖权重初始化、批量归一化等技术,用户还可以访问项目起始代码,并学习在 AWS SageMaker 上部署模型。
PortraitGen-code - 肖像视频编辑技术,结合多模态生成模型
3D重建GithubPortraitGen多模态生成开源项目视频编辑风格迁移
这个项目实现了一种创新的肖像视频编辑方法,采用多模态生成模型来实现统一且高表达力的风格转换,能够处理单目RGB视频中的文本和图像驱动的高质量编辑以及光照调整,从而提高面部结构呈现的质量。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号