Project Icon

tnlearn

基于符号回归生成任务专属神经元的Python库

tnlearn是一个开源Python库,通过符号回归算法生成任务专属神经元。该库利用多样化神经元构建神经网络,提升特征表示能力。tnlearn支持向量化符号回归,寻找最优公式并将其参数化为神经元的可学习聚合函数。在多项基准测试中,tnlearn展现出优异性能,为人工神经网络设计开辟新途径。

tensorly - Python张量学习库,兼容多种计算后端
GithubPythonTensorLy开源项目张量代数张量分解机器学习
TensorLy是一个专注于简化张量学习的Python库,支持张量分解、张量学习和张量代数操作。其后端系统兼容NumPy、PyTorch、JAX、TensorFlow和CuPy,可在CPU或GPU上执行大规模计算。安装方便,仅需使用pip或conda命令,且提供详尽的文档和Jupyter Notebooks示例,方便用户快速入门。这个工具不仅适合学术研究,还为开发者提供了丰富的API,欢迎通过GitHub进行贡献。
textgenrnn - 高效训练文本生成神经网络的实用模块
GithubKerasPythonTensorFlowchar-rnntextgenrnn开源项目
textgenrnn是一个基于Keras和TensorFlow的Python 3模块,只需几行代码即可训练不同规模和复杂度的文本生成神经网络。支持字符级和词级训练,并可使用预训练模型加快训练。其现代架构利用注意力加权和跳过嵌入等技术,提升模型质量和训练速度。可在GPU上训练并在CPU上生成文本,还可在Colab中免费试用。
ILearnDeepLearning.py - 深度学习和数据科学的开源实践项目集
GithubILearnDeepLearning.pyMedium开源项目数据科学深度学习神经网络
此开源项目库集合了多个与深度学习和数据科学相关的小项目,通过实际操作帮助用户理解复杂的神经网络问题。内容包括详细的代码示例和可视化展示,涵盖梯度下降、神经网络数学原理、过拟合分析、优化器选择、卷积神经网络理论及自定义对象检测模型的训练等。适合希望深入了解和实践深度学习技术的用户,内容实用且丰富。
tnt - PyTorch训练库,简化和优化模型训练过程
GithubPyTorchTNTtorchtnt安装开源项目训练工具
TNT 是一个用于 PyTorch 的训练库,支持 pip 和 conda 安装,并提供 master 版本更新。TNT 简化了 PyTorch 模型训练,提升开发效率。
Ai-Learn - 人工智能学习材料,包括Python基础、机器学习、数据挖掘及深度学习
GithubPython人工智能开源项目数据分析机器学习深度学习
Ai-Learn提供全面的人工智能学习材料,包括Python基础、机器学习、数据挖掘及深度学习。项目通过200多个案例、数据集与教程,协助学习者高效学习与避免常见错误,适合各层次人士。
tutorial - 机器学习和深度神经网络算法综合教程
Github人工智能开源项目机器学习深度学习神经网络算法
该教程全面介绍机器学习和深度学习算法,涵盖从基础到高级的内容。包括环境搭建、入门指南、框架介绍和核心概念。详细讲解BP神经网络、SVM、决策树等多种算法,以及回归、聚类和贝叶斯等模型。提供丰富的理论知识和实践指导,适合系统学习AI和算法的开发者参考。
returnn - 多GPU优化的Theano/TensorFlow循环神经网络框架
GithubLSTMRETURNN多GPU环境开源项目神经网络训练速度
RETURNN是一个基于Theano和TensorFlow的现代循环神经网络框架,优化于多GPU环境下的快速可靠训练。其主要特点包括简便的配置与调试、支持多种实验模型,以及高效的训练和解码速度。项目还支持小批量训练、序列分块训练、长短期记忆网络、多维LSTM和大数据集内存管理,广泛应用于机器翻译和语音识别领域。RETURNN提供详尽的文档和使用教程,并通过StackOverflow标签提供社区支持。
ttt-lm-pytorch - 基于测试时训练的高表达能力RNN模型
GithubRNNTTT序列建模开源项目机器学习隐藏状态
ttt-lm-pytorch项目提出了一种新型序列建模层,结合了RNN的线性复杂度和高表达能力的隐藏状态。该方法将隐藏状态设计为机器学习模型,通过自监督学习在测试阶段持续更新,因此被称为测试时训练(TTT)层。项目实现了TTT-Linear和TTT-MLP两种变体,分别采用线性模型和双层MLP作为隐藏状态,为长序列建模提供了高效替代方案。
pytorch-sentiment-neuron - Pytorch版本的情感神经元实现情感分析与文本生成
Githubcudamlstm_ns.ptpython 3.5pytorchsentiment开源项目
项目pytorch-sentiment-neuron基于Pytorch,实现了利用情感神经元进行情感分析和文本生成。用户可以通过预设模型文件和简单的命令行操作生成文本并进行情感分析,lm.py文件还允许在新数据上重新训练模型。该项目依赖Pytorch、Cuda和Python 3.5,适用于自然语言处理和情感分析领域的研究人员和开发者。
CNTK - 深度学习工具包,支持多种模型,包括DNN、CNN和RNN
CNTKGithubONNX开源开源项目深度学习神经网络
CNTK,微软的开源深度学习工具包,支持多种模型,包括DNN、CNN和RNN。具备自动微分和GPU并行化等高级功能,简化开发和训练流程,并完美支持ONNX,兼容多种AI框架。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

稿定AI

稿定设计 是一个多功能的在线设计和创意平台,提供广泛的设计工具和资源,以满足不同用户的需求。从专业的图形设计师到普通用户,无论是进行图片处理、智能抠图、H5页面制作还是视频剪辑,稿定设计都能提供简单、高效的解决方案。该平台以其用户友好的界面和强大的功能集合,帮助用户轻松实现创意设计。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号