Project Icon

InternImage

突破大规模视觉基础模型性能极限

InternImage是一款采用可变形卷积技术的大规模视觉基础模型。它在ImageNet分类任务上实现90.1%的Top1准确率,创下开源模型新纪录。在COCO目标检测基准测试中,InternImage达到65.5 mAP,成为唯一突破65.0 mAP的模型。此外,该模型在涵盖分类、检测和分割等任务的16个重要视觉基准数据集上均展现出卓越性能,树立了多个领域的新标杆。

convnextv2_base.fcmae_ft_in22k_in1k - 多功能图像分类与特征提取模型
ConvNeXt-V2GithubHuggingfaceImageNettimm图像分类开源项目模型预训练模型
ConvNeXt-V2是一款先进的图像分类模型,通过全卷积掩码自编码器框架(FCMAE)预训练,并在ImageNet-22k和ImageNet-1k数据集上微调。除图像分类外,该模型还可用于特征图提取和图像嵌入。拥有8870万参数,ConvNeXt-V2在ImageNet-1k验证集上实现86.74%的Top-1准确率。凭借在多项基准测试中的卓越表现,ConvNeXt-V2成为各类计算机视觉任务的优秀选择。
Retinexformer - Retinexformer:高效低光照图像增强工具,支持15个基准测试和超高分辨率
GithubICCV 2023NTIRE 2024Retinexformer低光照图像增强开源项目高分辨率图像
Retinexformer是一个低光照图像增强项目,支持超过15个基准测试和超高分辨率图像(最高4000x6000)。该项目在NTIRE 2024挑战中获得第二名,提供代码、预训练模型和训练日志。Retinexformer框架支持分布式数据并行和混合精度训练,自适应分割测试策略显著提升模型性能。
MambaVision-S-1K - MambaVision融合Mamba与Transformer的计算机视觉新型架构
GithubHuggingfaceMambaVision图像分类开源项目模型深度学习模型特征提取计算机视觉
MambaVision-S-1K是一种新型计算机视觉模型,首次融合了Mamba和Transformer的设计理念。研究者通过改进Mamba结构增强了其视觉特征建模能力,并验证了与Vision Transformer的有效集成。在ImageNet-1K基准测试中,该模型在准确率和效率方面取得了平衡。MambaVision可用于图像分类和特征提取任务,提供了简洁的调用接口。这一创新架构为计算机视觉领域带来了新的研究思路和应用前景。
yolov10 - 实现实时端到端目标检测新突破
GithubYOLOv10人工智能实时检测开源项目目标检测端到端
YOLOv10是新一代实时端到端目标检测模型,通过创新的无NMS训练策略和全面的效率-准确度优化设计,在推理速度和计算效率方面实现显著提升。COCO数据集实验结果表明,YOLOv10在不同模型规模下均达到了业界领先的性能和效率水平,为实时目标检测领域带来新的发展方向。
clip-vision-model-tiny - 轻量级AI图像处理与分析视觉模型
GithubHuggingfaceMIT协议代码许可开源协议开源项目模型许可证软件授权
基于MIT许可证开发的轻量级图像视觉模型,采用紧凑架构设计,具备高效的图像处理和分析能力。该开源项目适用于快速部署场景,可在资源受限环境中保持准确的图像识别表现。
vit_tiny_patch16_384.augreg_in21k_ft_in1k - ViT-Tiny 轻量级视觉转换器模型实现图像分类与特征提取
GithubHuggingfaceImageNetVision Transformertimm图像分类开源项目模型深度学习
ViT-Tiny是一款轻量级视觉转换器模型,专为图像分类和特征提取而设计。该模型在ImageNet-21k上预训练,并在ImageNet-1k上微调,采用了先进的数据增强和正则化技术。模型仅有5.8M参数,能处理384x384尺寸的图像,通过timm库可轻松加载用于推理或进一步微调。ViT-Tiny在保持高性能的同时,大幅降低了计算资源需求,适合各类图像识别应用场景。
CLIP-ViT-B-32-roberta-base-laion2B-s12B-b32k - 零样本图像识别与跨模态检索应用
CLIP ViT-B/32GithubHuggingfaceOpenCLIP图像分类开源项目模型模型评估训练数据
该模型基于OpenCLIP,并利用LAION-5B中的LAION-2B英文子集进行训练,实现了有效的零样本图像分类和跨模态检索。在ImageNet、MSCOCO和Flickr30k测试集上的表现优于基线,适用于图像分类和生成等任务。训练过程中采用32k批次大小处理12B训练样本,并通过VTAB+、COCO和Flickr等数据集进行评估。
densenet201.tv_in1k - DenseNet图像分类模型实现高效特征提取与精准分类
DenseNetGithubHuggingfaceImageNet图像分类开源项目模型深度学习计算机视觉
DenseNet201是一个在ImageNet-1k数据集上训练的图像分类模型。该模型拥有2000万参数,支持224x224像素输入,适用于图像分类、特征图提取和图像嵌入等任务。其密集连接的卷积网络结构不仅提供准确的分类结果,还能生成丰富的特征表示。模型通过timm库提供预训练权重,便于快速部署和使用。
DCNv4 - 为视觉应用设计的高效算子,通过优化空间聚合和内存访问
DCNv4Github可变形卷积开源项目深度学习神经网络计算机视觉
DCNv4是一种为视觉应用设计的高效算子。通过优化空间聚合和内存访问,它解决了DCNv3的局限性。DCNv4在图像分类、分割和生成等任务中表现优异,收敛和处理速度显著提升,前向速度提高3倍以上。其卓越的性能和效率使DCNv4成为未来视觉模型的潜力基础构建块。
IP-Adapter-Instruct - 多任务图像生成的突破性技术
GithubIP Adapter Instruct图像生成多任务学习开源项目扩散模型条件控制
IP-Adapter-Instruct是一种先进的图像生成技术,融合了自然图像条件和指令提示。这个模型能够高效处理多种任务,包括风格迁移和对象提取,同时保持高质量输出。它克服了传统文本提示在描述图像风格和细节方面的局限性,提供了更精确的图像生成控制。IP-Adapter-Instruct在实际应用中表现出色,为扩散模型的发展提供了新的可能性。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号