Project Icon

rllte

强化学习研究和应用的长期演进项目

RLLTE项目受到电信长期演进标准的启发,旨在为强化学习研究与应用提供开发组件和标准。项目不仅提供高质量的算法实现,还作为开发算法的实用工具包。RLLTE支持模块化设计、优化硬件加速、兼容多种计算设备和自定义环境,且包含大量可重复使用的基准。

rl - 开源强化学习库TorchRL
TorchRL是专为PyTorch设计的开源强化学习库,提供高效的研究性能。它具备完整Python接口、模块化、定制化及强大扩展性,配备详尽文档和测试,确保用户快速上手且使用可靠。此外,TorchRL包括多种可复用功能,适用于成本、回报处理和数据管理,是开展强化学习研究与应用的理想工具。
AgileRL - 革新强化学习的高效开发框架
AgileRLGithub开源项目强化学习机器学习超参数优化进化算法
AgileRL是一个创新的深度强化学习库,专注于提升强化学习的开发效率。通过引入RLOps概念,该库显著缩短了模型训练和超参数优化的时间。AgileRL采用进化超参数优化技术,自动找到最优超参数,减少了大量训练运行。它支持多种先进的可进化算法,包括单智能体、多智能体、离线学习和上下文多臂赌博机,并具备分布式训练能力。相比传统方法,AgileRL在超参数优化速度上实现了10倍的提升。
openrl - 综合性强化学习平台,支持多任务训练
GithubOpenRLPyTorch多智能体开源项目强化学习自然语言处理
OpenRL 是一款基于 PyTorch 的开源强化学习研究框架,支持单代理、多代理、离线强化学习、自我对弈及自然语言处理任务。框架提供统一接口、训练加速方法和多种深度学习模型支持,兼容 Gymnasium、MuJoCo、StarCraft II 等多种环境。同时,OpenRL 还支持用户自定义训练模型、奖励模型和环境配置,并提供中英文文档。
rlcard - 增强学习在纸牌游戏中的应用工具包
GithubRLCard卡牌游戏开源工具开源项目强化学习算法
RLCard是一个开源的纸牌游戏增强学习工具包,支持多种卡牌环境,并易于接入不同的强化学习和搜索算法,致力于推动非完美信息游戏的研发进展。本项目由DATA Lab(Rice及德克萨斯A&M大学)与全球开发者共同维护。
LLM-RLHF-Tuning - RLHF三阶段训练支持指令微调、奖励模型和多种训练方式
DPOGithubLLaMALLaMA2PPORLHF开源项目
本项目实现了RLHF的三阶段训练,包括指令微调、奖励模型训练和PPO算法训练。支持LLaMA和LLaMA2模型,并提供多种分布式加速训练方法。项目附有详细的实现文档,并对比了其他开源框架的功能,是RLHF训练的宝贵资源。
awesome-deep-rl - 深度强化学习领域的最新研究综述与应用案例
Deep Reinforcement LearningGithubModel-basedPolicy GradientReinforcement LearningUnsupervised RL开源项目
该项目收录了深度强化学习领域的重要研究成果和应用示例,包括最新的学术论文、框架、算法和应用案例,覆盖无监督、离线、价值基础和策略梯度等多种方法。项目内容经常更新,提供最新的研究动态和工具,如2024年的HILP与2022年的EDDICT。适合从事人工智能、机器学习和强化学习的专业人员与爱好者了解该领域的最新进展。
tmrl - 实时机器人控制与自动驾驶AI的分布式强化学习框架
GithubGymnasium环境TMRLTrackMania 2020开源项目强化学习自动驾驶
TMRL是一个面向机器人学习的分布式强化学习框架,专注于实时应用中的深度强化学习AI训练。该框架以TrackMania 2020游戏为例,展示了基于原始截图的自动驾驶控制。TMRL具备安全远程训练、灵活定制和实时环境兼容性等特点,采用单服务器多客户端架构,可在多个节点收集样本并在高性能集群上进行训练。
rl-book - 强化学习理论及Python实现的教程和代码
GithubPyTorchReinforcement LearningTensorFlow开源项目理论算法
本书系统介绍强化学习,从基础理论到具体算法实现,包含基于TensorFlow和PyTorch的代码对照,实现经典和现代深度强化学习算法。提供完整数学推导和高质量代码,适合希望深入理解和应用强化学习的读者。
Practical_RL - 强化学习开源课程:实用技巧与实践
GithubGoogle ColabHSEPractical_RLYSDA开源项目强化学习
Practical_RL是一个专注于强化学习实用性的开源课程,提供HSE和YSDA的课堂教学及线上学习支持,涵盖英语和俄语材料。课程从基础理论到实践应用,包括价值迭代、Q学习、深度学习、探索策略、策略梯度方法、序列模型及部分观察MDP等内容。学生可以通过GitHub改进课程,使用Google Colab或本地环境进行实践。适合希望在实际问题中应用强化学习的学生和研究者。
RL-Theory-book - 强化学习理论与算法全面指南
Github人工智能开源项目强化学习深度学习理论算法
该书全面介绍强化学习理论,涵盖从基础到前沿的多个主题。内容包括元启发式方法、经典理论、基于价值和策略的方法、连续控制和基于模型的方法等。同时探讨模仿学习、内在动机和多任务学习等新兴领域。书中系统阐述理论基础和算法洞察,适合强化学习研究者和实践者参考。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号