Project Icon

nanodet

轻量级移动设备实时目标检测模型

NanoDet-Plus 是一款超轻量级高精度的无锚目标检测模型,专为移动设备实时检测设计。其模型文件仅有980KB(INT8)或1.8MB(FP16),在ARM CPU上实现97fps检测速度,精度达34.3 mAP@0.5:0.95。NanoDet-Plus 训练友好,GPU内存占用低,支持ncnn、MNN、OpenVINO等多种后端,提供基于ncnn的安卓演示。此模型在COCO数据集上提升了7 mAP,支持多种分辨率和配置,满足不同场景需求。

rtdetr_r101vd_coco_o365 - 实时目标检测革新者RT-DETR超越传统性能表现
GithubHuggingfaceRT-DETR开源项目模型模型训练深度学习目标检测计算机视觉
RT-DETR通过混合编码器架构和不确定性最小化查询选择方法实现目标检测任务。在COCO数据集测试中,RT-DETR-R101版本达到56.2% AP精度,T4 GPU上处理速度为74 FPS。模型可通过调整解码器层数实现速度与精度的灵活平衡,为实时目标检测领域提供新的技术方案。
deformable-detr - 使用ResNet-50骨干网络实现的Deformable DETR目标检测模型
COCO 2017Deformable DETRGithubHuggingfaceHungarian算法卷积神经网络开源项目模型物体检测
Deformable DETR模型依托ResNet-50骨干网络,实现了高效的端到端目标检测。通过变形Transformer机制,它能够有效处理并识别图像中的复杂对象。此模型在COCO 2017数据集上经过充分训练,采用目标查询匹配和双重损失优化技术,显著提高了检测精度。适用于高效目标检测场景。
yolos-tiny - 轻量级Vision Transformer目标检测模型
COCO数据集GithubHuggingfaceYOLOS图像处理开源项目模型目标检测视觉转换器
YOLOS-tiny是基于Vision Transformer的轻量级目标检测模型,在COCO 2017数据集上微调。模型采用简单架构,通过双边匹配损失训练,可预测物体类别和边界框。在COCO验证集上达到28.7 AP,与复杂框架性能相当。YOLOS-tiny为资源受限场景提供高效目标检测方案,适用于各种计算机视觉应用。
D-FINE - 精细化分布优化在实时物体检测中的应用
D-FINEDETRFine-grained Distribution RefinementGithub对象检测开源项目自蒸馏
D-FINE是一款实时物体检测工具,通过重新定义DETRs中的边框回归任务为精细化分布优化(FDR)以及引入全局最优定位自蒸馏(GO-LSD),在不增加推理和训练成本的情况下,提升了检测性能。它在复杂街道场景下具有出色的定位能力,对于逆光、运动模糊和密集人群等挑战表现优异。最新版本增强了预训练模型的性能并提供了自定义数据集微调和输入尺寸调整的配置。
yolov7 - 实时目标检测算法实现性能新突破
GithubYOLOv7开源项目性能优化深度学习目标检测计算机视觉
YOLOv7是一款高效的实时目标检测算法,在MS COCO数据集上实现了51.4% AP的性能。该项目提供多种模型变体,包括YOLOv7-X和YOLOv7-W6等,适用于不同应用场景。此外,YOLOv7还具备姿态估计和实例分割功能,支持多GPU训练、迁移学习和模型导出,是一个全面的目标检测解决方案。
PointTinyBenchmark - 目标定位与检测的先进开源工具箱
GithubTinyPersonmmdetection开源项目点监督目标定位目标检测
基于mmdetection的开源工具箱,专注目标定位和检测任务。项目实现了多项先进算法,如小目标检测尺度匹配、单点监督目标定位等。提供丰富资源,支持计算机视觉研究,尤其适用于小目标和点监督场景。为研究人员提供了强大工具,推进计算机视觉领域发展。
detr-resnet-50 - DETR 基于Transformer的创新目标检测模型
COCO数据集DETRGithubHuggingfaceResNet-50Transformer开源项目模型目标检测
DETR-ResNet-50是一种创新的目标检测模型,融合Transformer架构与ResNet-50骨干网络。该模型采用端到端训练方法,简化了传统目标检测流程。经COCO 2017数据集训练后,DETR能高效检测和定位图像中的多个物体,在目标检测任务中实现42.0的平均精度(AP)。其简洁设计和卓越性能为计算机视觉领域带来新的可能。
FCOS - 完全卷积单阶段对象检测技术
FCOSGithubResNet-50卷积神经网络开源项目性能提升目标检测
FCOS算法是一种完全卷积的单阶段对象检测方法,通过避免使用锚点框,提高了检测性能和速度。在COCO minival数据集上,FCOS实现了46FPS和40.3的AP评分,并在各种模型和硬件上表现出色,包括ResNe(x)t和MobileNet等。与Faster R-CNN相比,FCOS在ResNet-50平台上表现更佳(38.7对36.8的AP),且训练和推理时间更短。该项目已基于Detectron2实现,并引入了多项优化和改进。
opencv-mobile - 优化轻量化的OpenCV库 适配多平台移动与桌面系统
Githubopencv-mobile开源项目移动设备计算机视觉跨平台预构建包
opencv-mobile是OpenCV库的轻量级优化版本,专为移动和嵌入式设备设计。该项目支持Android、iOS、ARM Linux等多种平台,提供2.4、3.4和4.10三个主要版本。通过精简库体积并保留核心功能,使其更适合资源受限环境。opencv-mobile将OpenCV库的体积缩小了90%以上,Android版从292MB减少到17.7MB,iOS版从207MB减少到3.97MB,同时保留了核心计算机视觉功能。所有二进制文件均在GitHub Actions上公开编译,确保代码透明和安全性。
tiny-dnn - 轻量级C++14深度学习库,适用于嵌入式系统和物联网设备
C++14Githubtiny-dnn嵌入式系统开源项目深度学习物联网设备
tiny-dnn是一个为计算资源有限的嵌入式系统和物联网设备设计的C++14深度学习库。该库无需GPU,通过TBB线程和SSE/AVX向量化实现了高效性能,在13分钟内达到了98.8%的MNIST准确率。其便携的头文件形式使其易于集成,支持多种网络层类型、激活函数、损失函数和优化算法。tiny-dnn还能导入Caffe模型,适合学习和构建神经网络应用。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号