Project Icon

Sonya-7B

MT-Bench测试中表现出色的Sonya-7B模型

Sonya-7B在MT-Bench测试中超越GPT-4,成为第一轮表现最佳且总排名第二的全能模型。该模型融合了xDAN-L1-Chat-RL-v1和Stealth v1.2等多种模型的优势,具备强大性能和一致的提示效果。Sonya-7B是一款设计用于多种任务的通用模型,适合助手和角色扮演。尽管表现出色,它仍为7B模型,推荐使用8192上下文窗口,并建议尝试16384上下文扩展。该模型为直接融合结果,未进行额外训练或微调。

Llama-2-7B-Chat-GPTQ - Meta Llama 2推出的开源7B参数对话模型量化版
GithubHuggingfaceLlama 2Meta人工智能大语言模型对话系统开源项目模型
Llama-2-7B-Chat-GPTQ是Meta发布的Llama 2对话模型的量化版本。该模型针对对话场景进行了优化,在多项基准测试中表现出色。它提供多种量化参数选项,可适应不同硬件环境。这个开源模型在性能上可与部分闭源商业模型相媲美,为开发者提供了强大的对话AI解决方案。
Infinity-Instruct-7M-Gen-mistral-7B - Infinity-Instruct-7M-Gen-Mistral-7B 提升AI模型指令执行效率的开源方案
GithubHuggingfaceInfinity Instruct北京人工智能研究院开源开源项目数据集模型
Infinity-Instruct-7M-Gen-Mistral-7B是一个公开可用的监督指令微调模型。它在Infinity-Instruct-7M和Infinity-Instruct-Gen数据集上进行优化,无需用户反馈强化学习。在AlpacaEval 2.0评测中,该模型表现优于Mixtral 8x22B v0.1、Gemini Pro和GPT-4。使用创新的训练技术,显著减少了模型训练成本,且基于与OpenHermes-2.5-Mistral-7B相同的聊天模板,专为对话场景设计。该模型和相关资源仅用于学术研究,且准确性不可担保。
llava-v1.5-7b - 融合视觉与语言的开源多模态AI模型
GithubHuggingfaceLLaVA人工智能图像文本理解多模态模型开源项目模型自然语言处理
LLaVA-v1.5-7B是一个开源的多模态AI模型,通过微调LLaMA/Vicuna实现。该模型整合了视觉和语言处理能力,能够理解图像并进行自然语言对话。LLaVA-v1.5-7B在大规模数据集上训练,包括558K图文对和158K多模态指令数据,并在12个基准测试中表现优异。这个模型主要应用于多模态大模型和聊天机器人的研究,适用于计算机视觉、自然语言处理等领域的研究人员。
NeuralLLaMa-3-8b-DT-v0.1 - 结合多模型优势的文本生成解决方案,增强任务表现
GithubHuggingfaceLazyMergekitNeuralLLaMa-3-8b-DT-v0.1准确率开源项目文本生成模型模型合并
NeuralLLaMa-3-8b-DT-v0.1 是一种通过融合ChimeraLlama-3-8B-v2、llama-3-stella-8B和llama-3-merged-linear等模型,借助LazyMergekit技术,提升了文本生成任务精确度的开源项目。适用于0-Shot和多次尝试测试,表现出出色的任务表现,严格准确率达43.71%。项目易于集成,支持多种量化配置,适合多种平台应用。
Index-1.9B - 多语言对话与角色扮演支持的高性能模型
GithubIndex-1.9B对话模型开源开源项目模型评估结果
Index-1.9B系列模型集成了SFT和DPO,显著提升了多语言对话和翻译性能。该系列包含基础模型、纯净模型、对话模型和角色扮演模型,特别适用于中文和东亚语言环境。最新更新包含适配llamacpp和Ollama的版本,并开放了衰减前的检查点供研究使用。提供高效的量化方法和详细的微调指南,确保模型在实际应用中的出色表现,开发者可通过丰富的定制和优化选项提升模型效果。
t5-11b - 统一框架下的多语言文本转换模型
GithubHuggingfaceT5开源项目文本转换模型自然语言处理迁移学习预训练模型
T5-11B是一个基于Text-To-Text Transfer Transformer架构的大型语言模型,拥有110亿参数。该模型采用统一的文本到文本格式,能够处理机器翻译、文档摘要、问答和分类等多种NLP任务。T5-11B在Colossal Clean Crawled Corpus (C4)上进行预训练,并在24个任务上评估性能。模型支持英语、法语、罗马尼亚语和德语,展现出优秀的迁移学习能力,为自然语言处理应用奠定了坚实基础。
rulm - 俄语语言模型:的实现与性能对比
GPT Role-play RealmGithubRuTurboAlpacaRussianSuperGLUESaigarulm开源项目
此项目展示了俄语语言模型的实现与比较,涵盖DataFest的分享、主要演示和Fine-tuning Colab资源链接。同时介绍了基于ChatGPT生成数据的RuTurboAlpaca和Saiga两个主要数据集,以及相关模型及其训练配置的详细内容。提供了数据集生成脚本和提示。此外,还展示了GPT Role-play Realm的数据集和模型评估结果,包括与GPT4和gpt-3.5-turbo的对比分析。
llava-v1.6-34b-hf - 图像与文本交互的多模态AI模型
GithubHuggingfaceLLaVa-NeXTNous-Hermes-2-Yi-34B光学字符识别多模态聊天机器人开源项目模型视觉指令微调
LLaVa-NeXT模型结合大规模语言模型与视觉编码器,通过提高图像分辨率和优化数据集,增强了OCR和常识推理能力,适用于多模态对话应用场景。支持图像字幕生成和视觉问答,提供双语功能与商业许可保障。
OmniFusion - 整合多模态数据的先进人工智能系统
GithubOmniFusion图像处理多模态AI模型开源项目深度学习自然语言处理
OmniFusion是一个整合多模态数据的人工智能系统,基于Mistral-7B核心和CLIP-ViT-L视觉编码器。通过创新的适配器机制,该系统能够处理图像等多种数据形式,在图像描述和视觉问答等任务中展现出优秀性能。OmniFusion由AIRI研究所FusionBrain团队与Sber AI合作开发,目前主要处理图像数据,未来计划扩展到音频等更多模态。
Meta-Llama-3.1-8B-Instruct-quantized.w8a8 - 量化优化的多语言文本生成模型
GithubHuggingfaceMeta-Llama-3vLLM多语言开源项目文本生成模型量化
该模型通过INT8量化优化,实现了GPU内存效率和计算吞吐量的提升,支持多语言文本生成,适用于商业和研究中的辅助聊天任务。在多个基准测试中,该模型实现了超越未量化模型的恢复率,尤其在OpenLLM和HumanEval测试中表现突出。使用GPTQ算法进行量化,有效降低了内存和磁盘的占用。可通过vLLM后端快速部署,并支持OpenAI兼容服务。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

稿定AI

稿定设计 是一个多功能的在线设计和创意平台,提供广泛的设计工具和资源,以满足不同用户的需求。从专业的图形设计师到普通用户,无论是进行图片处理、智能抠图、H5页面制作还是视频剪辑,稿定设计都能提供简单、高效的解决方案。该平台以其用户友好的界面和强大的功能集合,帮助用户轻松实现创意设计。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号