Project Icon

MACE

扩散模型中的大规模概念擦除技术

MACE是一种用于扩散模型的大规模概念擦除框架。该技术可同时擦除多达100个概念,并在泛化性和特异性间达成平衡。通过结合闭式交叉注意力优化和LoRA微调,MACE能有效消除不需要的概念信息。在对象、名人、显式内容和艺术风格擦除等多项任务评估中,MACE的性能均超越了现有方法。

MultiBooth - 基于文本的多概念图像生成技术
GithubMultiBooth图像生成多概念定制开源项目扩散模型文本到图像
MultiBooth是一种新型多概念图像生成技术,通过单概念学习和多概念集成两个阶段提高了生成效果。该方法使用多模态图像编码器和概念编码技术,学习每个概念的表示,并利用边界框定义生成区域,实现高质量的多概念图像生成。MultiBooth在生成质量和计算效率方面均优于现有方法,为文本到图像生成领域提供了新的解决方案。
mobius - 领域无关去偏见扩散模型重塑图像生成
AI绘图GithubHuggingfaceMobius开源项目扩散模型模型表征重对齐领域无关去偏
Mobius扩散模型采用创新的构造性解构框架,实现领域无关的去偏见和表征重对齐。该模型在多样化风格和领域中展现卓越泛化能力,无需昂贵的从头预训练。Mobius在无偏见生成、泛化性能和微调效率方面超越现有模型,为图像生成技术树立新标准。
MDT - MDTv2图像合成模型:更快收敛和卓越性能
GithubMasked Diffusion Transformer人工智能图像合成开源项目深度学习计算机视觉
MDTv2是一种先进的深度学习图像合成模型,在ImageNet数据集上实现了1.58的FID分数,创造新的业界标准。该模型采用掩码潜在建模技术,提高了图像语义理解能力,学习速度比先前模型快10倍以上。MDTv2在图像生成质量和训练效率方面都有显著提升,为计算机视觉和人工智能领域带来了新的可能性。
MIGC - 利用MIGC实现多实例文本生成图像
CVPR2024GithubMIGC多实例生成开源项目文本生成图像稳定扩散
MIGC项目的多实例生成控制器提升了文本生成图像的多样性和质量,包含COCO-MIG基准测试、在线Colab演示等资源。MIGC提升了属性控制,通过更换不同生成器权重,实现高质量和多样化图像生成。最新Consistent-MIG算法优化迭代编辑功能,保持未修改区域一致性并增强修改实例的一致性。此项目由浙江大学的ReLER实验室和华为监督。
MambaOut - 高效视觉模型展示简洁架构卓越性能
GithubMambaOut图像分类开源项目深度学习神经网络计算机视觉
MambaOut是一种新型视觉模型架构,通过堆叠门控CNN块构建,无需使用复杂的状态空间模型。在ImageNet图像分类任务中,它的性能超越了现有的视觉Mamba模型,同时具有较低的参数量和计算复杂度。该项目提供了从轻量级MambaOut-Femto到大型MambaOut-Base的多个预训练模型,在准确率和效率间实现平衡。研究人员可利用提供的代码和教程复现结果或应用于自身任务。
Awesome-Mamba-in-Low-Level-Vision - Mamba模型在低级视觉任务中的应用资源汇总
GithubMamba图像处理开源项目深度学习状态空间模型计算机视觉
该项目汇总了Mamba状态空间模型在低级视觉任务中的应用资源。涵盖图像恢复、超分辨率、去雨、去雾等多个领域的最新研究。提供论文链接和代码仓库,便于研究者了解和实践这一前沿技术。资源涉及图像处理、视频修复、遥感图像等多个方向,为探索Mamba模型在计算机视觉领域潜力的研究人员提供参考。
amc - 自动化模型压缩技术提升移动设备AI性能
AutoMLGithubImageNetMobileNet剪枝开源项目模型压缩
AMC (AutoML for Model Compression) 是一种创新的自动化模型压缩方法,专为优化移动设备上的深度学习模型而设计。该方法通过自动搜索剪枝策略、导出压缩权重和微调,成功将MobileNet等模型的计算量减少50%,同时维持或提升准确率。AMC不仅适用于MobileNet-V1和V2,还提供PyTorch和TensorFlow格式的压缩模型,为移动设备上的高效AI应用提供了新的可能性。
DCR - 扩散模型数据复制研究与优化方法分析
Diffusion模型Github开源项目数据复制机器学习生成式AI计算机视觉
DCR项目聚焦扩散模型中的数据复制问题,整合了两篇重要论文的研究成果和代码。项目内容包括数据复制现象分析、缓解策略提出、模型微调指南、推理方法、评估指标计算以及数据集资源。这些研究成果为提升扩散模型的生成质量和原创性提供了重要参考。
VideoMamba - 突破性的视频理解状态空间模型
GithubVideoMamba多模态兼容性开源项目状态空间模型视频理解长期视频建模
VideoMamba是一种创新的视频理解模型,克服了现有技术的局限性。它能高效处理长视频和高分辨率内容,展现出可扩展性、短期动作识别敏感性、长期视频理解优势和多模态兼容性四大核心特点。VideoMamba为全面的视频理解任务提供了高效解决方案,推动了该领域的发展。
Paint-by-Example - 通过扩散模型进行示范导向的图像编辑
GithubHuggingfacePaint by Example图像编辑开源项目扩散模型自监督训练
该项目通过自监督训练,重新组合源图像及示范图像,避免了直接复制粘贴带来的伪影。采用任意形状掩码和无分类器指导,提升编辑过程的可控性,并通过一次性前向扩散模型实现高保真图像编辑。项目展示了对自然图像的高效可控编辑效果,提供了预训练模型、测试基准和量化结果,适用于图像编辑和生成的研究与应用。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号