Project Icon

DeepLearningProject

全面教程涵盖数据集创建与深度学习

本教程详细介绍了从创建自定义数据集到应用传统和深度学习算法的完整机器学习管道。基于哈佛大学高级数据科学课程项目,内容更新为PyTorch版本,适合希望深入理解和实践机器学习的用户。

practicalAI-cn - PyTorch与Google Colab下的机器学习与深度学习实践
GithubGoogle ColabPyTorchpracticalAI开源项目机器学习深度学习
通过practicalAI-cn项目,任何水平的学习者都可以从基础到进阶掌握机器学习与深度学习技能。项目使用PyTorch实现核心算法,并提供多种notebooks,涵盖线性回归、卷积神经网络等多种模型。无需复杂的环境设置,可通过Google Colab直接运行,进行产品级的面向对象编程学习,助力从数据中获取有价值的见解。
machine-learning-curriculum - 了解机器学习及其工具,全面提升技能指南
Artificial IntelligenceDeep LearningGithubMachine LearningReinforcement LearningTensorFlow开源项目
该教程旨在引导学习机器学习,推荐实用工具和媒体资源,帮助用户融入机器学习领域。内容定期更新,保持新鲜度并移除过时信息。涵盖机器学习、深度学习、强化学习及最佳实践等多个主题,并提供详细的学习资源和书籍推荐。适合从初学者到高级用户,帮助提升机器学习技能,掌握最新技术。
Artificial-Intelligence-Deep-Learning-Machine-Learning-Tutorials - 最新的机器学习、深度学习和人工智能教程集锦
AI应用GithubPyTorchTensorFlow开源项目机器学习深度学习
该项目提供了涵盖机器学习、深度学习和人工智能的最新教程,强调在GPU编程、数据中心人工智能以及与Web3相关的可持续人工智能等领域的最新动向。集成了PyTorch、TensorFlow等工具和库的实战案例,助力用户精通深度学习技术,同时展示技术在交通、医疗等领域的应用前景。
deep-learning-coursera - 深入学习深度学习并探索人工智能领域
Andrew NgCourseraDeep Learning SpecializationGithubMachine LearningNeural Networks开源项目
Coursera上的深度学习专项课程,帮助学习者掌握神经网络和深度学习的关键概念与技术。课程由知名教授Andrew Ng讲授,涵盖基础神经网络构建、参数优化、卷积神经网络和序列模型的实际应用。课程包括丰富的编程作业和案例研究,帮助学习者通过实践巩固知识。无论初学者还是有经验的开发者,都能通过该课程提升深度学习技能,进入人工智能领域。
pytorch-tutorial - 为深度学习研究人员提供了学习 PyTorch 的教程代码
GithubPyTorch代码开源项目教程深度学习神经网络
突破传统学习障碍,探索PyTorch深度学习教程。通过精炼的代码,快速构建从基础到高级的模型如线性回归及神经网络等,同时详述安装指导与环境配置。
t81_558_deep_learning - 深度神经网络的应用
Deep LearningGithubJeff HeatonKerasTensorFlowWashington University开源项目
本课程结合先进训练技术和神经网络架构,使学生能够处理表格数据、图像、文本和音频。内容涵盖经典神经网络、卷积神经网络(CNN)、长短期记忆网络(LSTM)、门控循环单元(GRU)、生成对抗网络(GAN)和强化学习,应用于计算机视觉、时间序列、安全性、自然语言处理(NLP)和数据生成等领域。通过使用Python实现TensorFlow和Keras,课程特别侧重深度学习的实际应用。无需预先了解Python,但需具备基本编程知识。
mit-deep-learning - MIT深度学习课程教程集合
GithubMIT Deep Learning卷积神经网络开源项目深度学习教程深度强化学习生成对抗网络
本项目汇集了MIT深度学习课程的全面教程,涵盖基础知识、场景分割和生成对抗网络(GANs)等主题,适合初学者和进阶用户。项目包括前沿模型如DeepLab和BigGAN,并提供Jupyter Notebook和Google Colab示例,帮助学习者掌握核心技术。另有深度强化学习竞赛DeepTraffic,挑战开发者在复杂交通环境中训练神经网络实现高速驾驶。
Machine-Learning-Tutorials - 机器学习与深度学习教程资源
Github人工智能开源项目数据科学机器学习深度学习统计学
机器学习教程仓库包含机器学习与深度学习的主题分类教程、文章和其他资源,专为数据科学、自然语言处理和机器学习领域的初学者和专家设计。资源涵盖从入门介绍、面试资源到专家视频教程,以及涵盖线性回归、决策树等常用算法的详细讲解及实际案例展示。此外,项目还深入探讨了人工智能、图形处理学习和各种重要的机器学习概念。
PyTorch-Tutorial-2nd - 涵盖深度学习应用与推理部署的知识库
GithubPyTorch大语言模型开源项目深度学习自然语言处理计算机视觉
本书基于PyTorch,系统性涵盖深度学习的核心知识,包括计算机视觉、自然语言处理、大语言模型等实战案例,详解ONNX和TensorRT推理部署框架,为读者提供从基础到应用的完整指导,帮助快速掌握PyTorch并实现项目落地。适合AI自学者、产品经理及跨领域人士阅读。
MachineLearningWithMe - 全面深入的机器学习算法实践教程
Github人工智能开源项目数据分析机器学习模型算法
MachineLearningWithMe是一个系统化的机器学习教程项目,内容涵盖从环境配置到高级算法的多个方面。项目详细讲解并实现了线性回归、逻辑回归、K近邻、朴素贝叶斯、决策树、支持向量机、聚类和降维等核心算法。特别强调动手实践,指导读者从零开始实现各类算法,并提供泰坦尼克号生还预测等实际案例。此外还包括模型评估、特征工程和集成学习等进阶内容,适合初学到中级水平的学习者深入探索机器学习领域。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号