Project Icon

Cadet-Tiny

边缘设备上高效运行的小型对话模型

Cadet-Tiny是一款小型对话模型,基于SODA数据集训练。它专为边缘计算设备优化,仅需2GB RAM即可运行,适用于诸如Raspberry Pi等资源受限的场景。该模型源自t5-small预训练模型,体积仅为Cosmo-3B模型的2%。通过Google Colab教程,开发者可以探索如何利用此模型进行对话生成,适合应用于对话系统和自动回复场景。

t5-efficient-tiny - 基于深层窄结构设计的轻量级自然语言处理模型
GithubHuggingfaceT5开源项目模型模型架构深度学习自然语言处理预训练模型
T5-Efficient-TINY是一个轻量级自然语言处理模型,基于Google T5架构开发。模型通过深层窄结构优化设计,仅需1558万参数即可实现出色性能。该模型在C4数据集完成预训练后,可用于文本摘要、问答和分类等英语NLP任务,需要进行针对性微调。采用半精度存储时,模型仅占用31.16MB内存,运行效率较高。
TinyLlama-1.1B-Chat-v1.0 - 基于Llama 2架构的轻量级对话模型
AI模型GithubHuggingfaceTinyLlama开源项目模型聊天机器人自然语言处理
TinyLlama-1.1B-Chat-v1.0是一个基于Llama 2架构的轻量级对话模型,仅有1.1B参数。该模型在3万亿tokens上预训练,并通过UltraChat数据集微调和DPO训练实现对齐。它采用与Llama 2相同的架构和分词器,易于集成到现有Llama项目中。其紧凑设计使其适用于计算和内存资源受限的应用场景。
TinyLlama-1.1B-Chat-v1.0-GPTQ-4bit - 基于GPTQ量化技术的轻量级4位对话AI模型
GPTQGithubHuggingfaceTinyLlama开源项目机器学习模型模型压缩量化模型
TinyLlama-1.1B-Chat-v1.0的4位量化版本,是一个轻量级对话AI模型。该项目采用AutoGPTQ技术进行量化,使用GPTQ方法将模型压缩至4位精度。量化配置包括128的组大小、0.01%的阻尼比例和对称量化等特性。这种优化显著降低了模型大小和内存占用,同时保持了模型性能,为资源受限的AI应用提供了高效解决方案。
ChatLM-mini-Chinese - 小参数中文对话模型,支持低显存预训练,优化SFT和DPO性能
ChatLM-Chinese-0.2BGithubHuggingfaceRLHF优化SFT微调开源项目预训练
ChatLM-mini-Chinese是一个小参数中文生成式语言模型项目。模型参数为0.2B,最低4GB显存即可实现预训练,512MB显存可进行推理。项目公开预训练和优化数据集,包括SFT微调和DPO偏好优化,支持多种下游任务。基于Huggingface NLP框架,自实现trainer,支持单机单卡及多卡训练,并可断点续训。此项目优化了内存和显存的使用,为硬件资源不足的用户提供了一种高效的中文对话解决方案。
TinyChatEngine - 面向边缘设备的高效语言模型推理库
AWQGithubLLMSmoothQuantTinyChatEngineVLM开源项目
TinyChatEngine是一个专为边缘设备设计的语言模型推理库,支持运行大型语言模型(LLM)和视觉语言模型(VLM)。该库采用SmoothQuant和AWQ等先进的模型压缩技术,兼容x86、ARM和CUDA等多种平台架构,无需依赖外部库。TinyChatEngine具备跨平台兼容性、高性能和易用性等特点,能在笔记本电脑、汽车和机器人等设备上实现实时推理,提供快速响应的同时保护数据隐私。
TinyLlama-1.1B-Chat-v1.0-GPTQ - 轻量级聊天模型适用于资源受限场景
GPTQ量化GithubHuggingfaceTinyLlama人工智能模型开源项目模型模型压缩自然语言处理
TinyLlama-1.1B-Chat-v1.0-GPTQ是一个经GPTQ量化的轻量级聊天模型。基于1.1B参数的TinyLlama,提供4位到8位多种量化版本,平衡了模型大小和推理质量。支持Linux和Windows平台,适用于文本生成和对话等任务。该模型特别适合资源受限场景和快速部署需求。
bert-tiny - 轻量级预训练自然语言处理模型
BERTGithubHuggingface开源项目模型模型压缩知识蒸馏自然语言处理预训练模型
BERT-tiny是一款轻量级预训练自然语言处理模型,源自Google BERT项目。它采用2层网络结构和128维隐藏层,专为资源受限环境下的下游任务设计。尽管体积小巧,BERT-tiny在自然语言推理等任务中仍表现出色,保留了BERT模型的核心功能。这使其成为需要在计算资源有限情况下进行自然语言处理的研究人员和开发者的理想选择。
TinyLlama-1.1B-Chat-v0.3 - 轻量级高性能AI聊天助手 基于3万亿token训练
GithubHuggingfaceTinyLlama大语言模型对话模型开源项目模型预训练
TinyLlama-1.1B-Chat-v0.3是一个基于Llama 2架构的轻量级开源语言模型,使用1.1B参数在3万亿tokens上预训练。模型采用OpenAssistant数据集微调,支持chatml格式,具有部署灵活、资源占用少等特点。TinyLlama保持了与Llama生态系统的兼容性,同时适用于计算资源受限的场景,为AI聊天应用提供了一个高效实用的解决方案。
TinyLlama-1.1B-Chat-v0.6 - 基于Llama 2架构的轻量级开源聊天模型
GithubHuggingfaceTinyLlama人工智能开源项目模型聊天机器人语言模型预训练
TinyLlama-1.1B-Chat-v0.6是基于Llama 2架构的轻量级开源聊天模型。该模型在3万亿个token上预训练,仅有11亿参数,可与多种Llama项目兼容。它利用UltraChat数据集微调,并通过DPOTrainer在UltraFeedback数据集上对齐,平衡了性能和灵活性。TinyLlama适用于计算和内存资源受限的应用场景,为开发者提供了高效的集成选择。
TinyLlama-1.1B-Chat-v1.0-llamafile - 紧凑型1.1B Llama Chat模型,适用于多种计算需求
GPUGithubHuggingfaceTinyLlama对话模型开源项目模型量化预训练
TinyLlama-1.1B-Chat经过3万亿个tokens的预训练,并在90天内优化完成。它提供API和CLI接口,采用与Llama 2相同的架构和分词器,适合内存和计算受限的环境,可以兼容多种开源项目。模型在合成数据集上的微调和与开源工具的对齐,增强了对话生成的多样性和准确性,适用于各种自然语言处理应用。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号