Project Icon

SRe2L

创新的ImageNet规模数据集压缩技术

SRe2L项目提出了一种新颖的大规模数据集压缩方法,通过'挤压'、'恢复'和'重新标记'三个步骤实现ImageNet规模数据的高效压缩。该方法在NeurIPS 2023会议上获得spotlight展示,为数据集蒸馏领域带来新的研究视角。项目还包括SCDD和CDA等相关工作,共同推动数据集蒸馏技术在大数据时代的应用和发展。

DIS - 高精度二值图像分割方法,优化模型与即将发布的V2.0数据集
DIS datasetDichotomous Image SegmentationECCV 2022GithubIS-NetU2-Net开源项目
简要介绍高精度二值图像分割(DIS)任务的新进展,包括ECCV 2022接受的论文、DIS5K数据集V1.0和即将发布的V2.0版本。DIS任务应用于3D建模、图像编辑、艺术设计、静态图像动画和增强现实等领域。目前发布的为学术版本模型,用户可通过链接下载预训练权重进行推理。优化模型和更全面的数据集即将发布,敬请关注。
InternImage - 突破大规模视觉基础模型性能极限
GithubInternImage图像分类大规模视觉模型开源项目目标检测语义分割
InternImage是一款采用可变形卷积技术的大规模视觉基础模型。它在ImageNet分类任务上实现90.1%的Top1准确率,创下开源模型新纪录。在COCO目标检测基准测试中,InternImage达到65.5 mAP,成为唯一突破65.0 mAP的模型。此外,该模型在涵盖分类、检测和分割等任务的16个重要视觉基准数据集上均展现出卓越性能,树立了多个领域的新标杆。
stable-cascade - 基于高压缩率架构的新一代AI图像生成模型
GithubHuggingfaceStable Cascade人工智能图像生成开源项目机器学习模型深度学习
Stable Cascade采用三阶段级联架构设计,实现了42倍的图像压缩率,可将1024x1024图像压缩至24x24尺寸。模型在保持图像重建质量的同时,显著提升了处理效率,支持LoRA、ControlNet等主流扩展功能。当前发布了两个Stage C版本,分别为10亿和36亿参数规模。
sd-controlnet-mlsd - 结合M-LSD直线检测优化Stable Diffusion的图像生成
ControlNetGithubHuggingfaceM-LSDStable Diffusion开源项目扩散模型条件输入模型
该项目介绍了ControlNet神经网络结构,通过加入M-LSD直线检测等条件来控制大规模扩散模型,适用于Stable Diffusion。ControlNet能够在小数据集下进行稳健学习,且可在个人设备上快速训练。项目提供了多种检查点,涵盖边缘检测、深度估计和关键点检测,丰富了大规模扩散模型的控制方式,有助于推进相关应用的发展,最佳效果在Stable Diffusion v1-5结合使用时体现。
Stylized-ImageNet - 介绍如何在卷积神经网络中创建和使用风格化的ImageNet数据集
CNNGithubImageNetPyTorchStylized-ImageNetTensorFlow开源项目
项目详细介绍了如何创建Stylized-ImageNet,一个经风格化处理的ImageNet版本,用于诱导卷积神经网络(CNN)的形状偏向。Stylized-ImageNet通过改变图像的局部纹理而保持整体形状完整,并有助于提高模型的准确性和鲁棒性。项目提供了使用说明、训练细节和Docker镜像,简化实现过程。用户还可使用提供的代码对任何图像数据集进行风格化处理,提升研究效率。
LLM-Pruner - 通过结构剪枝技术高效压缩大型语言模型的工具
GithubLLM-Pruner压缩多任务解决开源项目结构剪枝自动剪枝
LLM-Pruner项目专注于通过结构剪枝技术高效压缩大型语言模型,在保留多任务处理能力的同时减少训练数据需求。仅需3分钟剪枝及3小时后训练,此方法利用50,000个公开样本快速实现剪枝与再训练。支持Llama系列、Vicuna、BLOOM、Baichuan等多种LLM,自动化剪枝过程简化了新模型的剪枝步骤。该技术允许根据需要调整模型规模,优化资源使用。
res2net101_26w_4s.in1k - Res2Net101多尺度骨干网络实现高效图像分类和特征提取
GithubHuggingfaceImageNet-1kRes2Nettimm图像分类开源项目模型特征提取
res2net101_26w_4s.in1k是基于Res2Net架构的图像分类模型,通过ImageNet-1k数据集训练而成。该模型采用多尺度设计,在图像分类和特征提取方面表现优异。它拥有4520万个参数,适用于224x224尺寸的图像处理。除图像分类外,还支持特征图提取和图像嵌入功能。研究人员和开发者可通过timm库便捷地将此模型应用于多种计算机视觉任务。
nni - 可自动执行特征工程、神经架构搜索、超参数调优和深度学习的模型压缩
GithubNNI开源项目架构搜索模型压缩神经网络智能优化超参数调整
NNI提供一站式解决方案,支持自动化的特征工程、神经架构搜索、超参数调整和模型压缩。它兼容多种框架,并提供详尽的API、丰富的示例及全面的教程。适用于多种训练环境,包括本地、远程SSH服务器和Kubernetes,帮助推动开源社区的技术发展。
SupContrast - 监督对比学习框架增强视觉表征
GithubSupContrast图像分类对比学习开源项目损失函数监督学习
SupContrast是一个开源的监督对比学习框架,致力于提升视觉表征学习效果。该项目实现了监督对比学习和SimCLR算法,在CIFAR数据集上展现出色性能。它提供简洁的损失函数实现,支持自定义数据集,并附有详细运行指南和可视化结果。在ImageNet上,SupContrast实现了79%以上的Top-1准确率。这一工具为计算机视觉领域的研究和应用提供了重要支持。
MST - 多阶段光谱重建工具箱及算法
GithubMST++NTIRE 2022Spectral Compressive ImagingTransformer开源项目高光谱图像重建
本页面介绍了支持15种以上算法的光谱压缩成像重建工具箱,包括MST++等在NTIRE挑战中获奖的前沿方法。页面列出了TwIST、GAP-TV、DeSCI等顶级光谱重建算法,还提供了相关代码、预训练模型和实验结果,方便研究者进一步研究与应用。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号