#NeurIPS

Efficient-AI-Backbones - 领先的人工智能模型与技术 - Huawei Noah's Ark Lab 研发
AI模型Transformer华为机器学习NeurIPSGithub开源项目热门
Efficient-AI-Backbones 项目涵盖了由华为诺亚方舟实验室研发的一系列先进的人工智能模型,包括 GhostNet, TNT, AugViT, WaveMLP, 和 ViG 等。这些模型通过创新的结构设计和优化,有效提升了计算效率和性能,广泛应用于各种智能处理任务。最新发布的 ParameterNet 在 CVPR 2024 会议上被接受,展现了华为在人工智能技术领域的持续领先。
graph-based-deep-learning-literature - 探索基于图的深度学习最新文献与会议进展
图形深度学习NeurIPSICML计算机视觉数据挖掘Github开源项目
该项目收录了基于图的深度学习领域内,例如NeurIPS、ICML和ICLR等顶级会议的出版物、相关工作坊、综述文章、书籍以及软件资源链接。这些资源为学术研究人员和专业学者提供了方便的一站式服务,便于他们探索、查询及利用该领域内的最新科研成果和工具。
continual-learning - PyTorch 在三种不同场景中实现各种持续学习方法
Continual LearningPyTorchNeurIPSincremental learningSynaptic IntelligenceGithub开源项目
此项目实现了在增量学习场景中的PyTorch深度神经网络实验,支持学术设置下的分类问题,且可进行更加灵活的无任务增量学习实验。项目提供了演示脚本和详细的安装指导,适合多种经典方法的性能对比和自定义实验。
CAGrad - 高效优化多任务学习的梯度冲突
多任务学习梯度下降CAGradNeurIPS强化学习Github开源项目
CAGrad是一种多任务学习算法,专注于解决梯度冲突问题。该方法通过冲突避免策略平衡各任务目标,在图像预测和强化学习领域表现出色。CAGrad实现简洁,适用于复杂的多任务场景,为相关研究提供新思路。该项目已被NeurIPS 2021接收,并提供了完整的源代码和实验指南。
NDR-code - 单目RGB-D相机的动态场景神经表面重建
动态场景重建神经网络RGB-D相机3D重建NeurIPSGithub开源项目
NDR是一种基于神经网络的动态场景表面重建方法,利用单目RGB-D相机数据恢复高保真几何、运动和外观。该技术无需模板,适用于复杂场景重建。NDR在NeurIPS 2022会议获得Spotlight展示,体现了其在3D视觉领域的创新性。项目提供开源代码和数据集,为相关研究提供参考。
neurips_llm_efficiency_challenge - NeurIPS单GPU大语言模型效率优化挑战赛
NeurIPSLLMGPUHELMDockerfileGithub开源项目
NeurIPS大语言模型效率挑战赛旨在优化单GPU上的模型运行效率。参赛者需提交Dockerfile实现HTTP服务器,通过HELM任务子集评估模型性能。大赛提供批准的模型和数据集列表,以及样例代码和评估指南。优胜者将在NeurIPS研讨会展示成果。比赛鼓励创新,助力大语言模型在有限资源下的应用。
SRe2L - 创新的ImageNet规模数据集压缩技术
数据集蒸馏大规模数据自监督压缩ImageNetNeurIPSGithub开源项目
SRe2L项目提出了一种新颖的大规模数据集压缩方法,通过'挤压'、'恢复'和'重新标记'三个步骤实现ImageNet规模数据的高效压缩。该方法在NeurIPS 2023会议上获得spotlight展示,为数据集蒸馏领域带来新的研究视角。项目还包括SCDD和CDA等相关工作,共同推动数据集蒸馏技术在大数据时代的应用和发展。
rtdl-num-embeddings - 数值特征嵌入技术助力表格深度学习性能提升
数值特征嵌入表格深度学习神经网络MLPNeurIPSGithub开源项目
rtdl-num-embeddings项目提出了一种处理表格深度学习数值特征的嵌入技术。该方法将连续标量特征转换为向量表示,并在主干网络中混合使用,有效提升了模型性能。这种技术适用于多种模型架构,尤其是在使用嵌入的简单MLP模型中表现突出。通过解决真实世界表格数据中连续特征分布不规则的问题,该方法改善了模型整体优化效果,为表格深度学习领域提供了新的研究方向。
Awesome-Computer-Vision-Paper-List - AI顶会论文集大全 一站式检索平台
人工智能会议论文收集CVPRNeurIPSICCVGithub开源项目
项目收录了CVPR、ICCV、ECCV、AAAI、IJCAI、NeurIPS等AI顶级会议论文,覆盖计算机视觉和人工智能多个领域。研究人员可快速检索特定主题论文或相似研究。数据源自官方网站,确保信息准确。资源库持续更新,是AI研究人员的重要参考工具。
STCN - 改进内存覆盖的高效视频对象分割框架
视频目标分割STCN空间时间对应神经网络NeurIPSGithub开源项目
STCN是一个创新的视频对象分割框架,通过改进内存覆盖重新构建时空网络。该方法在多个基准测试中达到了最先进水平,同时保持20+ FPS的高效运行。STCN采用简洁的网络结构,建立图像间亲和力,并使用L2相似度替代点积,显著提升内存利用率。这种方法在准确性和效率间实现了理想平衡,为视频对象分割研究带来新思路。
leandojo-lean4-retriever-byt5-small - 利用检索增强模型改进定理证明技术
LeanDojo开源项目检索增强模型Github语言模型定理证明NeurIPSHuggingface
LeanDojo项目应用检索增强的语言模型,旨在提升数学与逻辑推理中的自动化水平。通过自然语言处理和机器学习的结合,LeanDojo为定理证明提供了高效创新的解决方案,显著提高了检索精度并加速了复杂问题的求解。目前,该项目正在NeurIPS会议的Datasets and Benchmarks Track中评审,适用于研究人员扩大在数学领域应用机器学习的探索。详情请访问LeanDojo官方网站。