Project Icon

FAST-VQA-and-FasterVQA

开源高效视频质量评估框架

FAST-VQA和FasterVQA是端到端视频质量评估的开源工具箱,提供高效的评估模型。FasterVQA作为FAST-VQA的改进版,在保持相似性能的同时速度提升4倍。这些模型在多个数据集上达到最先进水平。项目采用模块化架构,支持灵活的空间和时间采样方法及多种网络结构。研究者可进行模型训练、测试,并在小型数据集上微调。

SlowFast - 开源视频理解框架 提供多种先进模型架构
GithubPySlowFast开源项目深度学习神经网络模型视频理解计算机视觉
PySlowFast是FAIR开发的开源视频理解代码库,提供高效训练的先进视频分类模型。支持SlowFast、Non-local Neural Networks、X3D和Multiscale Vision Transformers等多种架构。该框架便于快速实现和评估视频研究创新,涵盖分类、检测等任务。PySlowFast兼具高性能和轻量级特点,适用于广泛的视频理解研究。
common_metrics_on_video_quality - 多指标视频质量评估工具包
FVDGithubLPIPSPSNRSSIM开源项目视频质量评估
这是一个开源项目,提供了计算FVD、SSIM、LPIPS和PSNR等多种视频质量评估指标的工具包。支持灰度和RGB视频格式,适用于生成模型和预测模型的视频质量评估。项目在Ubuntu系统上运行稳定,并提供了详细的使用说明和注意事项。研究人员和开发者可以利用此工具包进行便捷的视频质量分析。
ffmpeg-quality-metrics - FFmpeg视频质量多指标评估工具
FFmpegGithubPSNRSSIMVMAF开源项目视频质量评估
FFmpeg Quality Metrics是一个开源的视频质量评估工具,支持PSNR、SSIM、VMAF和VIF等多种指标计算。它可输出逐帧指标、各平面/组件指标及全局统计数据。该工具跨平台兼容,支持Python 3.8+。通过命令行即可对视频进行质量评估,并提供多种可配置选项以满足不同评估需求。
VBench - 视频生成模型多维度质量评估套件
GithubPython包VBench基准套件开源项目视频生成模型评价
VBench项目提供一个全面的基准测试套件,专用于评估视频生成模型的多维质量。通过分层的评估维度,VBench可以细化并客观地评估视频生成质量的多个方面。套件包含详细的提示和评估方法,并提供人类偏好注释,确保结果与人类感知一致。用户可以选择对自定义视频或标准提示进行评估,以确保模型间的公平对比。
DOVER - 创新解耦视频质量评估方法
DOVERGithub开源项目深度学习用户生成内容美学和技术评估视频质量评估
DOVER是一种创新的视频质量评估方法,将审美和技术两个维度解耦,为用户生成内容提供全面评估。该方法从现有UGC-VQA数据集中分离这两个维度,并提供了包括轻量级DOVER-Mobile在内的多个版本。项目开源了代码、演示和权重,支持单视频和批量视频集评估,并提供了详细的安装使用说明。DOVER在多个基准数据集上取得了领先性能,为视频质量评估领域带来了新的研究方向。
FLAVR - 创新视频帧插值方法实现快速多帧预测
FLAVRGithub帧率提升开源项目深度学习视频插帧计算机视觉
FLAVR是一种新型视频帧插值方法,无需光流估计即可实现快速多帧预测。该方法采用特殊的编码器-解码器架构,结合时空卷积和通道门控,能有效捕捉复杂运动轨迹并生成高质量高帧率视频。相比现有技术,FLAVR在速度和准确性间取得更好平衡,为视频慢动作和帧率提升等应用提供新选择。
IQA-PyTorch - 纯Python和PyTorch图像质量评估工具箱
GPU加速GithubIQAPyTorch图像质量评估开源项目纯Python
IQA-PyTorch是一款基于纯Python和PyTorch的图像质量评估工具箱,支持多种主流全参考和无参考评估指标。通过GPU加速,评估速度优于Matlab实现,用户可通过命令行或代码进行图像质量评估。该工具箱还支持作为损失函数使用,提供便捷的基准数据集下载和详细文档,适用于评估各种场景。定期更新及多种预训练模型让它成为图像质量评估的理想选择。详情请查阅文档和示例代码。
FasterViT - 高效分层注意力的视觉transformer新突破
FasterViTGithub图像分类层级注意力机制开源项目目标检测视觉Transformer
FasterViT是一种创新的视觉transformer模型,采用分层注意力机制高效捕获短程和长程信息。在ImageNet分类任务中,FasterViT实现了精度和吞吐量的新平衡,无需额外训练数据即达到最先进水平。该项目提供多种预训练模型,适应不同计算资源和精度需求,支持任意分辨率输入,为目标检测、分割等下游任务提供灵活选择。
VADER - 基于奖励梯度的视频生成质量优化技术
AIGithubVADER开源项目机器学习视觉处理视频生成
VADER是一种基于奖励梯度的视频生成质量优化技术。该方法无需大规模标注数据集,即可有效提高视频与文本的一致性、美观度,并生成更长时间的高质量视频。VADER兼容多个主流视频生成模型,如VideoCrafter2、Open-Sora和ModelScope,能显著提升其生成能力。项目提供了详细的安装、推理和训练指南,便于研究人员和开发者进行实验和应用。
video_features - 多模态视频特征提取框架 支持多种深度学习模型
GitHub项目Github多模态分析开源项目深度学习模型视频特征提取计算机视觉
video_features是一个开源的视频特征提取框架,支持视觉、音频和光流等多种模态。该框架集成了S3D、R(2+1)d、I3D-Net等动作识别模型,VGGish声音识别模型,以及RAFT光流提取模型。它支持多GPU和多节点并行处理,可通过命令行或Colab快速使用。输出格式灵活,适用于视频分析相关的研究和应用。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号