Project Icon

PyPOTS

部分观测时间序列机器学习的开源Python工具箱

PyPOTS是一个专注于部分观测时间序列(POTS)机器学习的Python工具箱。它集成了经典和前沿算法,支持数据插补、分类、聚类、预测和异常检测等任务。该工具箱提供统一API、详细文档和交互示例,简化POTS数据处理流程。PyPOTS支持多种神经网络模型,并具备超参数优化功能,为时间序列分析提供综合解决方案。

Welcome to PyPOTS

a Python toolbox for machine learning on Partially-Observed Time Series

Python version powered by Pytorch the latest release version BSD-3 license Community GitHub contributors GitHub Repo stars GitHub Repo forks Code Climate maintainability Coveralls coverage GitHub Testing Docs building Conda downloads PyPI downloads arXiv DOI README in Chinese README in English PyPOTS Hits

⦿ Motivation: Due to all kinds of reasons like failure of collection sensors, communication error, and unexpected malfunction, missing values are common to see in time series from the real-world environment. This makes partially-observed time series (POTS) a pervasive problem in open-world modeling and prevents advanced data analysis. Although this problem is important, the area of machine learning on POTS still lacks a dedicated toolkit. PyPOTS is created to fill in this blank.

⦿ Mission: PyPOTS (pronounced "Pie Pots") is born to become a handy toolbox that is going to make machine learning on POTS easy rather than tedious, to help engineers and researchers focus more on the core problems in their hands rather than on how to deal with the missing parts in their data. PyPOTS will keep integrating classical and the latest state-of-the-art machine learning algorithms for partially-observed multivariate time series. For sure, besides various algorithms, PyPOTS is going to have unified APIs together with detailed documentation and interactive examples across algorithms as tutorials.

🤗 Please star this repo to help others notice PyPOTS if you think it is a useful toolkit. Please properly cite PyPOTS in your publications if it helps with your research. This really means a lot to our open-source research. Thank you!

The rest of this readme file is organized as follows: ❖ Available Algorithms, ❖ PyPOTS Ecosystem, ❖ Installation, ❖ Usage, ❖ Citing PyPOTS, ❖ Contribution, ❖ Community.

❖ Available Algorithms

PyPOTS supports imputation, classification, clustering, forecasting, and anomaly detection tasks on multivariate partially-observed time series with missing values. The table below shows the availability of each algorithm (sorted by Year) in PyPOTS for different tasks. The symbol indicates the algorithm is available for the corresponding task (note that models will be continuously updated in the future to handle tasks that are not currently supported. Stay tuned❗️).

🌟 Since v0.2, all neural-network models in PyPOTS has got hyperparameter-optimization support. This functionality is implemented with the Microsoft NNI framework. You may want to refer to our time-series imputation survey repo Awesome_Imputation to see how to config and tune the hyperparameters.

🔥 Note that all models whose name with 🧑‍🔧 in the table (e.g. Transformer, iTransformer, Informer etc.) are not originally proposed as algorithms for POTS data in their papers, and they cannot directly accept time series with missing values as input, let alone imputation. To make them applicable to POTS data, we specifically apply the embedding strategy and training approach (ORT+MIT) the same as we did in the SAITS paper[^1].

The task types are abbreviated as follows: IMPU: Imputation; FORE: Forecasting; CLAS: Classification; CLUS: Clustering; ANOD: Anomaly Detection. The paper references and links are all listed at the bottom of this file.

TypeAlgoIMPUFORECLASCLUSANODYear - Venue
LLMGungnir 🚀 [^36]Later in 2024
Neural NetImputeFormer🧑‍🔧[^34]2024 - KDD
Neural NetiTransformer🧑‍🔧[^24]2024 - ICLR
Neural NetSAITS[^1]2023 - ESWA
Neural NetFreTS🧑‍🔧[^23]2023 - NeurIPS
Neural NetKoopa🧑‍🔧[^29]2023 - NeurIPS
Neural NetCrossformer🧑‍🔧[^16]2023 - ICLR
Neural NetTimesNet[^14]2023 - ICLR
Neural NetPatchTST🧑‍🔧[^18]2023 - ICLR
Neural NetETSformer🧑‍🔧[^19]2023 - ICLR
Neural NetMICN🧑‍🔧[^27]2023 - ICLR
Neural NetDLinear🧑‍🔧[^17]2023 - AAAI
Neural NetTiDE🧑‍🔧[^28]2023 - TMLR
Neural NetSCINet🧑‍🔧[^30]2022 - NeurIPS
Neural NetNonstationary Tr.🧑‍🔧[^25]2022 - NeurIPS
Neural NetFiLM🧑‍🔧[^22]2022 - NeurIPS
Neural NetRevIN_SCINet🧑‍🔧[^31]2022 - ICLR
Neural NetPyraformer🧑‍🔧[^26]2022 - ICLR
Neural NetRaindrop[^5]2022 - ICLR
Neural NetFEDformer🧑‍🔧[^20]2022 - ICML
Neural NetAutoformer🧑‍🔧[^15]2021 - NeurIPS
Neural NetCSDI[^12]2021 - NeurIPS
Neural NetInformer🧑‍🔧[^21]2021 - AAAI
Neural NetUS-GAN[^10]2021 - AAAI
Neural NetCRLI[^6]2021 - AAAI
ProbabilisticBTTF[^8]2021 - TPAMI
Neural NetStemGNN🧑‍🔧[^33]2020 - NeurIPS
Neural NetReformer🧑‍🔧[^32]2020 - ICLR
Neural NetGP-VAE[^11]2020 - AISTATS
Neural NetVaDER[^7]2019 - GigaSci.
Neural NetM-RNN[^9]2019 - TBME
Neural NetBRITS[^3]2018 - NeurIPS
Neural NetGRU-D[^4]2018 - Sci. Rep.
Neural NetTCN🧑‍🔧[^35]2018 - arXiv
Neural NetTransformer🧑‍🔧[^2]2017 - NeurIPS
NaiveLerp
NaiveLOCF/NOCB
NaiveMean
NaiveMedian

💯 Contribute your model right now to increase your research impact! PyPOTS downloads are increasing rapidly (300K+ in total and 1K+ daily on PyPI so far), and your work will be widely used and cited by the community. Refer to the contribution guide to see how to include your model in PyPOTS.

❖ PyPOTS Ecosystem

At PyPOTS, things are related to coffee, which we're familiar with. Yes, this is a coffee universe! As you can see, there is a coffee pot in the PyPOTS logo. And what else? Please read on ;-)

TSDB logo

👈 Time series datasets are

项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号