Project Icon

UnsupervisedScalableRepresentationLearningTimeSeries

多变量时间序列的无监督可扩展表示学习方法

UnsupervisedScalableRepresentationLearningTimeSeries项目提出了一种无监督可扩展表示学习方法,专门用于处理多变量时间序列数据。该方法基于三元组损失训练编码器,能够处理等长或不等长时间序列。项目提供了UCR和UEA数据集实验代码,包括迁移学习和稀疏标记实验。此外,还包含预训练模型和结果可视化工具。在多个基准数据集上,该方法展现出优秀的性能,为时间序列分析领域提供了创新解决方案。

LLM4TS - 大型语言模型和基础模型在时间序列分析中的最新进展
AIGithubLLM基础模型开源项目时间序列预训练
LLM4TS项目整理了时间序列分析领域中大型语言模型和基础模型的最新研究。主要内容包括时间序列LLM的进展、专用基础模型、数据集和重要发现。此外,项目还涵盖了预训练时间序列模型和LLM在推荐系统等相关领域的应用,为研究和实践提供了丰富的资源。
Time-Series-Library - 开源深度学习时间序列分析工具库
GithubTSLib开源项目异常检测时间序列深度学习预测
TSLib为深度学习研究者提供了一个专业开源时间序列分析库,涵盖广泛的应用领域,如长短期预测、数据填充、异常检测和分类。本库提供清晰的代码基础,支持时间序列模型的评估与开发,包括最新的模型评估和深度时间序列研究成果。该工具适合科研和开发人员使用,以推动时间序列分析的未来研究与实践。
awesome-time-series - 时间序列预测与分析的全面资源汇总
GithubTransformer图神经网络开源项目异常检测时间序列预测深度学习
本项目汇集了时间序列预测领域的最新论文、代码和相关资源。内容涵盖M4竞赛、Kaggle时间序列竞赛、学术研究、理论基础、实践工具和数据集等。为研究人员和从业者提供全面的参考资料,促进时间序列预测技术的深入研究与应用。
Transformers_And_LLM_Are_What_You_Dont_Need - 分析深度学习模型在时间序列预测中的表现与局限
GithubMambaTransformers开源项目时间序列预测深度学习线性模型
本项目汇集大量研究论文和文章,深入分析变压器和大语言模型在时间序列预测中的表现及局限性。探讨这些深度学习模型处理时间序列数据的挑战,并介绍更适合的替代方法。为时间序列预测领域的研究和应用提供全面的参考资源。
TimeMixer - 多尺度混合技术推动时间序列预测新突破
GithubICLRMLP架构TimeMixer多尺度混合开源项目时间序列预测
TimeMixer是一种基于MLP架构的时间序列预测模型,通过多尺度混合技术实现长短期预测的性能突破。该模型利用Past-Decomposable-Mixing和Future-Multipredictor-Mixing模块处理多尺度时间序列,在多个基准数据集上展现出优异性能。TimeMixer不仅预测精度高,还具备良好的运行效率,适用于多种要求高效预测的应用场景。
HyperTS - 全面的时间序列分析工具包 支持多任务和多模式分析
GithubHyperTS开源项目异常检测时间序列分析自动机器学习预测
HyperTS是一款全面的时间序列分析工具包,集成了统计模型、深度学习和神经架构搜索。它支持预测、分类、回归和异常检测等多种任务,适用于复杂的时间序列分析场景。该工具包提供多变量和协变量支持,概率区间预测,以及丰富的预处理、评估指标和搜索策略。HyperTS简单易用,为时间序列分析提供了端到端的自动化解决方案。
Awesome-SSL4TS - 自监督学习在时间序列分析中的应用资源
Github对比学习开源项目时间序列生成式方法自监督学习表示学习
这个项目汇总了时间序列数据自监督学习的最新研究资源,包括相关论文、代码和数据集。资源分为生成式和对比式两大类方法,涵盖了自回归预测、自编码重构、扩散模型生成、采样对比、预测对比和增强对比等技术。该资源列表为时间序列自监督学习研究提供了全面的参考材料。
pytorch-ts - 概率时间序列预测开源框架
GithubPyTorchPyTorchTS开源项目时间序列预测概率模型深度学习
PyTorchTS是一个基于PyTorch的开源时间序列预测框架,利用GluonTS作为后端API。它提供先进的概率模型,支持数据处理和回测。该框架适用于单变量和多变量时间序列预测,安装简便,易于使用。PyTorchTS为数据科学家和研究人员提供了高效的时间序列分析工具。
Anomaly-Transformer - 创新时间序列异常检测模型的新方法
Anomaly-TransformerGithub开源项目异常检测无监督学习时间序列注意力机制
Anomaly-Transformer是一种时间序列异常检测模型,利用关联差异作为可区分标准,并结合Anomaly-Attention机制和极小极大策略提高检测效果。该模型在多个基准数据集上展现出优秀性能,为无监督时间序列异常检测领域提供了新的解决方案。
UniRepLKNet - 统一架构的大核卷积网络,提升多模态识别与时间序列预测精度
GithubUniRepLKNet图像识别多模态识别大核卷积开源项目时间序列
UniRepLKNet项目提出了一个适用于图像、音频、视频、点云和时间序列的大核卷积网络统一架构。通过提供四个设计大核卷积网络的架构指南,显著提升了多模态数据的识别性能。特别是在全球温度和风速预测等挑战性的时间序列预测任务中,UniRepLKNet表现优异,超过了现有系统。这一项目不仅重振了卷积神经网络在传统领域的表现,还展示了其在新兴领域的广泛应用潜力。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号