Project Icon

self-paced-ensemble

自适应集成学习框架解决高度不平衡数据分类

Self-paced Ensemble (SPE)是一个处理大规模高度不平衡数据分类的集成学习框架。SPE采用严格平衡的欠采样策略,无需计算样本间距离,适用于各类数据集。该框架计算高效,性能优异,可与多种学习模型兼容。作为通用框架,SPE能提升现有方法在不平衡数据上的表现,特别适合处理噪声大、极度不平衡的大规模数据集。

imbalanced-ensemble - 专注类别不平衡的Python集成学习库
GithubIMBENSPython开源项目机器学习类别不平衡集成学习
imbalanced-ensemble是一个针对类别不平衡数据的Python集成学习库。该库提供15种以上的集成不平衡学习算法和19种采样方法,特点包括易用API、优化性能和强大可视化功能。完全兼容scikit-learn和imbalanced-learn,支持二分类和多分类任务。imbalanced-ensemble适用于类别不平衡集成学习模型的快速实现、修改、评估和可视化。
imbalanced-learn - Python库解决机器学习不平衡数据问题
Githubimbalanced-learnscikit-learn开源项目数据不平衡机器学习重采样技术
imbalanced-learn是一个Python库,专门解决机器学习中的数据不平衡问题。它提供了多种重采样技术,如过采样、欠采样和组合方法,以获得更公平和稳健的模型。该库与scikit-learn完全兼容,使用简单,并提供详细文档和示例。作为scikit-learn-contrib项目的一部分,imbalanced-learn为数据科学家和机器学习工程师提供了处理不平衡数据集的有力工具。
awesome-imbalanced-learning - 解决分类问题中的类别失衡,精选学习资源与开源工具
Class-imbalanceGithubensemble learningimbalanced learning代码库开源项目文献
项目提供精选的类别失衡学习相关论文、代码和库,旨在解决分类问题中的类别不平衡。资源涵盖多种编程语言和研究领域,按编程语言和研究领域分类。项目持续更新,并引入了新包imbalanced-ensemble,适合从事欺诈检测、稀有副作用预测等研究的人员使用。
Ensemble-Pytorch - PyTorch集成学习框架助力模型优化
Ensemble-PyTorchGithubpytorch开源项目机器学习模型集成深度学习
Ensemble-Pytorch是一个为PyTorch设计的集成学习框架,旨在提高深度学习模型的性能和鲁棒性。该框架支持多种集成策略,如Fusion、Voting、Bagging和Gradient Boosting,适用于分类和回归任务。作为PyTorch生态系统的一部分,Ensemble-Pytorch提供简洁的API和详细文档,便于研究人员和开发者实现和优化集成模型。
SpeeD - 通过时间步长优化实现扩散模型训练加速
AI生成GithubSpeeD开源项目扩散模型深度学习训练加速
SpeeD是一种创新的扩散模型训练加速技术,通过对时间步长的深入分析和优化,将训练过程分为加速、减速和收敛三个区域。该方法采用重采样和重加权策略,实现了训练速度的显著提升。SpeeD易于与现有模型集成,能有效提高扩散模型的训练效率,为图像生成等任务提供了新的解决方案。
DeepSpeed - 一个深度学习优化库,专为大规模模型训练和推理设计
DeepSpeedGithub分布式训练大规模模型训练开源项目模型压缩模型推理
DeepSpeed 是一个深度学习优化软件套件,专为大规模模型训练和推理设计,能显著优化系统性能和降低成本。它支持亿级至万亿级参数的高效管理,兼容各种计算环境,从资源受限的GPU系统到庞大的GPU集群。此外,DeepSpeed 在模型压缩和推理领域亦取得创新成就,提供极低的延迟和极高的处理速率。
SynapseML - 简化大规模机器学习管道的开源工具
Apache SparkGithubSynapseML开源项目异常检测文本分析机器学习
SynapseML是一个开源库,旨在简化大规模机器学习管道的创建。它提供简单、可组合和分布式的API,支持文本分析、视觉处理、异常检测等多种任务。基于Apache Spark,SynapseML与SparkML/MLLib共享相同的API,能够无缝集成到现有的Spark工作流中。该库支持Python、R、Scala、Java和.NET,适用于各种数据库和云数据存储,助力构建智能系统。
GPBoost - 融合树提升与高斯过程的先进机器学习库
GPBoostGithub开源项目机器学习树提升混合效应模型高斯过程
GPBoost是一个创新机器学习库,融合树提升、高斯过程和分组随机效应模型。它支持独立应用树提升、高斯过程和广义线性混合效应模型,主要用C++编写,提供C接口及Python和R包。GPBoost算法结合树提升和潜在高斯模型优势,提高预测函数学习效率,优化高基数分类变量处理,并适用于空间或时空数据建模。这使其成为非线性建模和复杂依赖结构分析的理想工具。
perpetual - 自优化梯度提升机器学习算法
GithubPerpetualBooster开源项目梯度提升机自动机器学习过拟合预防预测性能
PerpetualBooster是一种创新的梯度提升机器算法,无需进行超参数优化。通过调整budget参数,该算法能够在单次运行中达到传统GBM算法100次迭代的精度。在多个数据集的测试中,PerpetualBooster展现出显著的性能优势,相较于LightGBM等算法,速度提升约100倍。该算法提供Python和Rust API接口,适用于回归和分类任务。这种高效的机器学习方法特别适用于需要快速建模和预测的场景,如金融分析、推荐系统和风险评估等领域。
skweak - Python开源工具助力NLP弱监督学习
GithubNLPskweak开源项目弱监督标注函数聚合模型
skweak是一个基于Python的开源工具包,通过弱监督方法解决NLP中标注数据稀缺问题。用户可定义多个标注函数自动标注文档,并聚合结果生成标注语料库。支持序列标注和文本分类,提供简洁API快速实现标注功能。与SpaCy集成,易于融入现有NLP流程。适用于资源匮乏语言、特定任务标签等场景,是NLP项目的有力助手。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号