Project Icon

Deep-Learning-for-Tracking-and-Detection

使用深度学习进行对象检测和跟踪的论文与资源合集

本项目汇集了有关深度学习在对象检测和跟踪领域的论文、数据集、代码及各种资源。内容涵盖静态检测、视频检测、多对象跟踪和单对象跟踪等主题,并提供了多种经典模型如RCNN、YOLO、SSD的实现和改进方案。此外,项目还涵盖了图像和视频分割、光流、运动预测等任务的资源,为研究人员和开发者提供了详尽的参考资料。

yolov3-tf2 - YOLOv3的TensorFlow实现,目标检测解决方案
GithubTensorFlow 2.0YoloV3开源项目检测训练预训练权重
该项目采用TensorFlow 2.0实现YOLOv3,提供预训练权重、推理示例和迁移学习功能,支持GPU加速、eager模式和图模式训练,并集成absl-py。用户可以方便地安装、训练和进行实时视频检测,同时支持TF模型导出和Serving。
darknet - 开源实时目标检测框架及YOLO算法
DarknetGithubYOLO开源项目目标检测神经网络计算机视觉
Darknet是一个开源神经网络框架,为YOLO实时目标检测系统提供基础。最新的YOLOv7算法在5-160 FPS范围内性能优异,超越了同类检测器。项目支持Linux和Windows平台,提供预训练模型、详细构建指南和命令行操作接口,方便用户进行目标检测、模型训练等任务。
a-PyTorch-Tutorial-to-Object-Detection - PyTorch物体检测模型教程与实现
GithubPyTorch单发多框检测卷积神经网络多尺度特征图对象检测开源项目
本教程详细指导如何使用PyTorch实现物体检测模型,包括模型构建、训练、评估和推理等环节。采用高效的单次多框检测(SSD)算法,介绍多尺度特征图、先验框和非极大值抑制等关键概念。适合具备PyTorch和卷积神经网络基础的学习者,教程提供中文翻译版便于理解和应用。
Awesome-Deep-Community-Detection - 社区发现中的深度学习方法综述与资源集
Github图神经网络复杂网络开源项目深度学习社区检测网络嵌入
本项目汇集了深度学习在社区发现领域的最新研究成果和资源。内容包括综述论文、基于卷积网络、图注意力网络和生成对抗网络的方法,以及相关数据集和工具。同时收录了传统的非深度学习社区发现技术,为研究人员提供全面参考。项目整理了大量论文、代码实现和相关资源,是了解该研究前沿的重要参考。
yolov7 - 实时目标检测算法实现性能新突破
GithubYOLOv7开源项目性能优化深度学习目标检测计算机视觉
YOLOv7是一款高效的实时目标检测算法,在MS COCO数据集上实现了51.4% AP的性能。该项目提供多种模型变体,包括YOLOv7-X和YOLOv7-W6等,适用于不同应用场景。此外,YOLOv7还具备姿态估计和实例分割功能,支持多GPU训练、迁移学习和模型导出,是一个全面的目标检测解决方案。
awesome-camouflaged-object-detection - 伪装物体检测研究进展综述与资源汇总
Github伪装物体检测图像分割开源项目数据集深度学习计算机视觉
本项目全面总结伪装物体检测(COD)领域的研究进展,涵盖检测、分割、场景理解等方向。汇集顶级论文、数据集和代码资源,定期更新最新成果。为研究人员提供了解COD前沿进展的重要参考。
ultralytics - 适用于对象检测、跟踪、实例分割和图像分类等多种应用场景的多功能对象检测模型
GithubUltralyticsYOLOv8姿态估计实例分割开源项目目标检测
Ultralytics的YOLOv8是一款前沿对象识别模型,提供了与前代产品相比更优化的特性。适用于对象检测、跟踪、实例分割和图像分类等多种应用场景,其高速准确性和用户友好性使其成为AI领域开发者的优选。更多细节,请参阅官方文档或参与Discord社区互动。
RT-DETR - 超越YOLO的实时目标检测算法领域突破
CVPR 2024GithubRT-DETR实时目标检测开源项目深度学习物体识别
RT-DETR是一个开源的实时目标检测算法项目,在性能上超越了YOLO系列。它提供多种模型变体,从轻量级R18到大型X模型,适应不同应用需求。在COCO和Objects365数据集上,RT-DETR展现出卓越性能,最高达到56.2mAP和217FPS。项目同时支持PyTorch和PaddlePaddle框架,便于研究和应用。
deep-learning-for-image-processing - 涵盖使用Pytorch和Tensorflow进行网络结构搭建和训练的介绍深度学习在图像处理中的应用的教程
GithubPytorchTensorflow图像分类图像处理开源项目深度学习
本教程介绍深度学习在图像处理中的应用,涵盖使用Pytorch和Tensorflow进行网络结构搭建和训练。课程内容包括图像分类、目标检测、语义分割、实例分割和关键点检测,适合研究生和深度学习爱好者。所有PPT和源码均可下载,助力学习和研究。
yolov5-deepsort-tensorrt - 基于YOLOv5和DeepSORT的Jetson设备目标跟踪系统
DeepSortGithubJetsonTensorRTYolov5开源项目目标跟踪
这个项目是YOLOv5和DeepSORT算法在Jetson设备上的C++实现,针对Jetson Xavier NX和Jetson Nano进行了优化。系统能够高效跟踪多个人头目标,在Jetson Xavier NX上处理70多个目标时可达到10 FPS。项目包含环境配置、模型生成和运行指南,支持自定义模型,并提供了不同YOLOv5版本的兼容性说明。适合需要在边缘设备上进行高性能目标跟踪的应用场景。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号