Project Icon

scikeras

Keras与Scikit-Learn的无缝集成工具

SciKeras是一个开源项目,旨在为Keras模型提供Scikit-Learn兼容的包装器。作为tf.keras.wrappers.scikit_learn的继任者,SciKeras保持API兼容性的同时,提供了更多功能。该项目支持TensorFlow,可通过pip轻松安装。SciKeras不仅提供详细文档,还有完整的迁移指南,方便用户从原有框架过渡。项目基于scikit-learn 1.4.1post1及以上版本和Keras 3.2.0及以上版本,为机器学习实践者提供了一个强大的集成工具。

scikit-learn - Python机器学习的核心工具库
GithubPythonscikit-learn开源项目数据科学机器学习
scikit-learn是基于SciPy构建的Python机器学习库,提供高效的数据挖掘和分析工具。支持分类、回归、聚类等多种机器学习任务,自2007年启动以来由志愿者维护,已成为广受欢迎的开源项目。其特点包括易用性、高性能和完善的文档,在学术和工业领域得到广泛应用。
skorch - scikit-learn兼容的PyTorch神经网络库
GithubGridSearchCVPyTorchscikit-learnskorch开源项目神经网络
skorch 是一款与 scikit-learn 兼容的神经网络库,通过封装 PyTorch 简化深度学习模型的构建和训练。功能包括学习率调度、早停与参数冻结等,并支持 Hugging Face 和 GPyTorch 的集成。用户可通过 pip 或 conda 安装,并在 sklearn Pipeline 和网格搜索中使用其功能,提升深度学习模型的开发与优化效率。
skforecast - 高效的Python时间序列预测库
GithubPython库scikit-learnskforecast开源项目时间序列预测机器学习
skforecast是一个专门用于时间序列预测的Python库,兼容scikit-learn API的各种回归器。它提供了全面的工具集用于训练、验证和预测,支持单序列和多序列、递归和直接策略等多种预测场景。该库注重快速原型设计、可靠模型评估和生产部署,适用于各类时间序列预测任务。
autokeras - 机器学习自动化工具,简化图像分类任务
AutoKerasAutoMLGithubPython开源项目机器学习深度学习
AutoKeras是由德州农工大学DATA实验室开发的开源项目,旨在简化机器学习流程。通过Keras的AutoML系统,用户能够轻松完成图像分类等任务。支持Python 3.7及以上版本和TensorFlow 2.8.0及以上版本,安装方便,只需使用pip命令。提供详细的官方教程和相关书籍资源,社区鼓励贡献和参与。
sk2torch - 实现scikit-learn模型到PyTorch模块的转换
GithubPyTorchTorchScriptscikit-learnsk2torch开源项目模型转换
sk2torch是一个开源工具,用于将scikit-learn模型转换为PyTorch模块。它解决了GPU加速推理、模型序列化和梯度计算等问题。sk2torch支持多种scikit-learn模型,使机器学习从业者能够利用PyTorch的GPU加速、TorchScript序列化和反向传播功能。这个项目为scikit-learn用户提供了更多的灵活性和性能优化选择。
keras-cv - 跨框架模块化计算机视觉工具集
GithubKerasKerasCV开源项目模型训练深度学习计算机视觉
keras-cv 是基于 Keras 3 的模块化计算机视觉库,兼容 TensorFlow、JAX 和 PyTorch。它为数据增强、分类、目标检测等视觉任务提供高级组件,支持跨框架迁移,并包含预训练模型。该库旨在帮助开发者高效构建生产级计算机视觉应用。
scikit-learn-ts - Node.js环境下的Python机器学习库集成方案
GithubNode.jsPythonTypeScriptscikit-learn-ts开源项目机器学习
scikit-learn-ts项目为Node.js开发者提供了使用Python scikit-learn机器学习库的便捷方式。该项目自动生成257个TypeScript类,涵盖KMeans、TSNE和PCA等算法,性能优于纯JavaScript实现。适用于本地开发环境,配有详细文档和示例,简化了Node.js中的机器学习应用。
visualkeras - 直观展示Keras和TensorFlow神经网络架构的Python可视化库
GithubKerasPython包TensorFlowvisualkeras开源项目神经网络可视化
visualkeras是一个用于可视化Keras和TensorFlow神经网络架构的Python库。它支持分层和图形两种架构生成样式,适用于CNN和前馈网络等多种模型。该库提供灵活的样式定制选项,包括生成图例、自定义颜色映射和隐藏特定层。用户可以通过多种参数控制图层间距、缩放和维度显示。visualkeras为神经网络架构的可视化提供了简单而功能丰富的解决方案,适用于研究和教育等多种场景。
keras-nlp - 兼容多框架的自然语言处理工具和预训练模型
GithubJAXKerasNLPPyTorchTensorFlow开源项目自然语言处理
KerasNLP 是一个兼容 TensorFlow、JAX 和 PyTorch 的自然语言处理库,提供预训练模型和低级模块。基于 Keras 3,支持 GPU 和 TPU 的微调,并可跨框架训练和序列化。设置 KERAS_BACKEND 环境变量即可切换框架,安装方便,立即体验强大 NLP 功能。
ktrain - 轻量级的深度学习和AI工具包
GithubTensorFlow Kerasktrain开源项目机器学习深度学习预训练模型
ktrain 是一个基于 TensorFlow Keras 的轻量级深度学习库封装,帮助用户快速构建、训练和部署各种机器学习模型。适用于文本、视觉、图表和表格数据,支持文本分类、图像识别、节点分类和因果推断等任务。无论是初学者还是有经验的研究人员,都能借助其简单的 API 和多种学习率策略,快速实现高效模型部署,支持导出到 ONNX 和 TensorFlow Lite。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

问小白

问小白是一个基于 DeepSeek R1 模型的智能对话平台,专为用户提供高效、贴心的对话体验。实时在线,支持深度思考和联网搜索。免费不限次数,帮用户写作、创作、分析和规划,各种任务随时完成!

Project Cover

白日梦AI

白日梦AI提供专注于AI视频生成的多样化功能,包括文生视频、动态画面和形象生成等,帮助用户快速上手,创造专业级内容。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

讯飞绘镜

讯飞绘镜是一个支持从创意到完整视频创作的智能平台,用户可以快速生成视频素材并创作独特的音乐视频和故事。平台提供多样化的主题和精选作品,帮助用户探索创意灵感。

Project Cover

讯飞文书

讯飞文书依托讯飞星火大模型,为文书写作者提供从素材筹备到稿件撰写及审稿的全程支持。通过录音智记和以稿写稿等功能,满足事务性工作的高频需求,帮助撰稿人节省精力,提高效率,优化工作与生活。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

Trae

Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号