Project Icon

Emojinator

基于机器学习的手势表情识别与分类

Emojinator项目通过机器学习技术提供不同手势表情的识别和分类解决方案。项目包含多个版本(如Emojinator 2.0和3.0),有详细的文件组织结构和创建手势及训练模型的代码。特别适合需处理电子消息和网页表情符号的应用场景,欢迎开发者们尝试使用。

1d-tokenizer - 创新1D图像分词框架实现高效图像处理
GithubTiTok图像标记化开源项目生成模型神经网络计算机视觉
1d-tokenizer项目开发了创新的1D图像分词框架,将256×256图像压缩至32个离散标记。该技术突破2D分词限制,提供更灵活紧凑的图像表示。相比扩散模型,生成速度提升数百倍,同时维持高质量输出。研究还深入探讨1D图像分词特性,为图像处理领域开辟新方向。
autonlp-Tweet-Sentiment-Extraction-20114061 - AutoNLP推文情感分析模型达80%准确率
AutoNLPGithubHuggingface开源项目情感分析机器学习模型模型训练自然语言处理
这是一个基于AutoNLP训练的多类别分类模型,主要应用于推文情感提取分析。模型在验证集上的准确率为80.36%,F1分数为0.807。开发者可通过cURL或Python API调用该模型进行推文情感分析,适用于社交媒体数据分析和用户反馈处理等场景。
vit-face-expression - Vision Transformer驱动的七类面部表情识别模型
FER2013GithubHuggingfaceVision Transformer人脸表情识别开源项目情感分析数据预处理模型
vit-face-expression模型采用Vision Transformer架构,通过FER2013数据集微调,实现了七种基本面部表情的识别。该模型可分析愤怒、厌恶、恐惧、快乐、悲伤、惊讶和中性表情,在测试集上达到71.16%的准确率。这一开源项目为面部情绪分析领域提供了新的解决方案。
HuggingFists - 简化LLM和HuggingFace模型应用的数据流工具
GithubHugging FaceHuggingFists低代码工作流管理开源项目数据流工具
HuggingFists是一个创新的数据流工具,旨在简化LLM和HuggingFace模型的应用。该工具提供低代码功能,包括工作流管理、作业调度和环境配置。通过直观的拖拽界面,用户可以设计数据处理流程,轻松访问HuggingFace模型和数据集。HuggingFists支持文本摘要、情感分类和命名实体识别等AI任务,同时允许本地模型部署。其独特的断点调试功能有助于提高AI应用开发效率。
Emu - 多模态AI模型 图像文本智能生成的新突破
EmuGithub多模态模型开源项目生成式人工智能自然语言处理视觉感知
Emu是BAAI开发的先进多模态生成模型系列,包括入选ICLR 2024的Emu1和CVPR 2024的Emu2。这些模型展示了卓越的多模态理解和生成能力,能在复杂环境中无缝生成图像和文本。Emu在图像描述、视觉问答等任务中表现优异,超越了许多现有模型。作为通用基础模型,Emu适用于广泛的应用场景,如智能创作、视觉分析等,代表了AI技术的新发展方向。BAAI开源Emu旨在推动多模态智能研究的进步,为下一代AI技术发展铺平道路。
emotion-english-distilroberta-base - DistilRoBERTa英文文本情感分析模型
DistilRoBERTaGithubHugging FaceHuggingface开源项目情感分类机器学习模型自然语言处理
该模型基于DistilRoBERTa-base微调,用于英文文本情感分析。可预测7种情绪:愤怒、厌恶、恐惧、快乐、中性、悲伤和惊讶。训练数据来自Twitter、Reddit等6个多样化数据集。提供简单的3行代码使用方法,适用于单个文本和完整数据集分析。模型在平衡数据集上的评估准确率为66%,远高于随机基准。
roberta-base-go_emotions - RoBERTa模型实现28种情感多标签分类
GithubHuggingfaceRoBERTago_emotions数据集text-classification多标签分类开源项目情感分析模型
该模型基于roberta-base,利用go_emotions数据集训练而成,可对文本进行28种情感的多标签分类。模型在测试集上实现0.474的准确率和0.450的F1分数。为提升性能,还提供ONNX版本。研究者可通过Hugging Face Transformers框架便捷应用此模型。值得注意的是,某些情感标签如'gratitude'表现优异,F1值超过0.9,而'relief'等标签表现欠佳,可能与训练数据分布不均有关。通过优化每个标签的阈值,模型的整体F1分数可提升至0.541,显示出进一步改进的潜力。
indobert-emotion-classification - 高性能印尼语情感分类BERT模型
GithubHuggingfaceIndoBERTtransformer开源项目情感分类模型模型导入自然语言处理
indobert-emotion-classification是一个基于BERT的印尼语情感分析模型。该模型能够对印尼语文本进行情感分类,支持多种情感标签。通过Hugging Face Transformers库,indobert-emotion-classification可以轻松集成到各种自然语言处理项目中。这个模型适用于分析印尼语社交媒体内容、客户反馈等文本数据的情感倾向,为研究人员和开发者提供了有力的工具。
Cemotion - 高效中文情感分析和分词工具库
BERTCemotionGithub中文NLP中文分词开源项目情感分析
Cemotion是一个Python中文NLP库,主要用于情感分析和通用领域分词。该库采用BERT模型训练,可为中文文本提供情感倾向置信度。新增的Cegementor类使用BAStructBERT模型进行语义分词。Cemotion支持批量处理和多平台部署,可自动调用GPU加速。2.0版本在性能和准确度方面有所提升。
misgif - 个性化GIF融合技术平台
AIAI工具GIFmisgif个性化表情包
misgif平台运用AI图像处理、深度学习和人脸识别技术,实现个性化GIF内容创作。用户只需一张自拍照,即可将自己融入流行电影、热门综艺等各种GIF、电视节目和电影场景。该技术为群聊交互带来创意和惊喜,使AI应用更具趣味性。misgif计划推出iOS应用,提升用户体验。这种创新方式让内容创作更富个人特色,增强社交互动乐趣。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号