Project Icon

Machine-Learning-Interviews

机器学习工程师面试指南,大厂技术面试全攻略

该指南专为机器学习工程师和应用科学家职位的技术面试设计,特别适用于FAANG等大厂。内容包括算法与数据结构、机器学习编码、系统设计、基础知识和行为面试模块。作者基于自身的面试经验和笔记编写,分享如何有效准备常见面试模块。尽管不同公司的机器学习面试结构有所不同,本指南的模块对其他相关职位也有参考价值,帮助应聘者更好地应对机器学习领域的技术挑战。

MachineLearningWithMe - 全面深入的机器学习算法实践教程
Github人工智能开源项目数据分析机器学习模型算法
MachineLearningWithMe是一个系统化的机器学习教程项目,内容涵盖从环境配置到高级算法的多个方面。项目详细讲解并实现了线性回归、逻辑回归、K近邻、朴素贝叶斯、决策树、支持向量机、聚类和降维等核心算法。特别强调动手实践,指导读者从零开始实现各类算法,并提供泰坦尼克号生还预测等实际案例。此外还包括模型评估、特征工程和集成学习等进阶内容,适合初学到中级水平的学习者深入探索机器学习领域。
Machine-Learning-Roadmap - 机器学习完整学习指南与优质资源推荐
Deep LearningGithubIIT KharagpurKLA CorporationMachine LearningPython开源项目
此页面全面介绍了学习机器学习所需的知识,包括数学和编程基础、机器学习和深度学习课程以及书籍推荐。精选资源助您从零开始掌握机器学习,具备开展项目和参加竞赛的技能。同时,提供热门框架和库的学习资源,适合初学者和进阶者。
dl-engineer-guidebook - 介绍深度学习工程师所需的知识, 硬件配置与软件环境详解
GithubLinux命令Python环境macOS环境开源项目深度学习深度学习工作站
本指南详细介绍深度学习工程师所需的知识,包括深度学习工作站配置、操作系统选择和硬件推荐、macOS和Ubuntu环境搭建与优化、Python环境设定、常用Linux命令等。还涵盖CV学习资源及数据集、经典预训练模型和TensorBoard的使用方法,助力工程师在深度学习领域发展。
Machine-Learning-Notes - 机器学习从入门到精通的全面笔记
Github人工智能学习开源项目机器学习笔记计算机科学
Machine-Learning-Notes 是一个机器学习领域的学习资源库,提供从基础到高级的笔记。项目涵盖算法、模型和实践应用,适合不同水平的学习者。资料全面且定期更新,采用循序渐进的学习方法,有助于系统掌握机器学习知识。其独特的结构化组织使学习者能够轻松找到所需资源,从而更有效地提升技能。
Machine-Learning-Tutorials - 机器学习与深度学习教程资源
Github人工智能开源项目数据科学机器学习深度学习统计学
机器学习教程仓库包含机器学习与深度学习的主题分类教程、文章和其他资源,专为数据科学、自然语言处理和机器学习领域的初学者和专家设计。资源涵盖从入门介绍、面试资源到专家视频教程,以及涵盖线性回归、决策树等常用算法的详细讲解及实际案例展示。此外,项目还深入探讨了人工智能、图形处理学习和各种重要的机器学习概念。
GPTInterviewer - 通过生成式AI定制面试问题,提高面试准备效果
AI InterviewerGithub互动体验开源项目生成式AI自定义问题面试准备
AI Interviewer利用生成式AI技术,为用户提供个性化的模拟面试体验。通过分析上传的简历和工作描述,生成量身定制的问题,帮助提升面试技能。无论是技术、沟通还是适应能力,AI Interviewer都能辅助进行全面的面试准备,还支持聊天和语音交互方式,提升面试成功率。
MachineLearning-QandAI-book - 深入探讨机器学习和人工智能领域的30个核心问题
GithubSebastian Raschka人工智能开源项目机器学习深度学习自然语言处理
该书通过30个章节探讨机器学习和人工智能领域的核心问题,内容涵盖基础概念和前沿技术。涉及多GPU训练范式、Transformer微调、编码器和解码器型LLM差异、视觉Transformer等主题。每章提供详细解释和扩展阅读资料,适合希望扩展知识并了解最新AI技术的读者。
applied-ml - 精选数据科学与机器学习应用案例研究和博客
Github开源项目推荐系统数据工程数据质量机器学习特征存储
通过精选的论文、文章和博客,学习企业如何实施数据科学与机器学习项目。了解不同公司对问题的定义、所采用的机器学习技术、背后的科学原理,以及所取得的商业成果,以便更好地评估投资回报。同时还包括最新的机器学习研究进展和实用指南。
RES-Interview-Notes - 推荐系统算法与实践全面指南
Github协同过滤开源项目推荐系统机器学习深度学习矩阵分解
RES-Interview-Notes项目全面涵盖推荐系统各个方面,包括基础理论、传统算法、深度学习模型及工程实践。内容涉及协同过滤、矩阵分解等经典方法,以及AutoRec、NeuralCF等前沿模型。同时探讨了系统评估和落地实施,为推荐算法工程师提供系统学习资料。
tech-interview-for-developer - 开发者技术面试知识库 计算机科学核心概念汇总
Github开源项目操作系统数据结构算法计算机科学面试
该项目是一个综合性的计算机科学知识库,涵盖了计算机架构、数据结构、数据库、网络和操作系统等核心领域。内容由多位贡献者维护并持续更新,提供了详细的知识点解析,可帮助开发者系统性地复习和准备技术面试。项目资源适合各层级的开发人员学习参考,是技术面试备考的重要工具。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号