Project Icon

chronos-t5-large

基于T5架构的大规模时间序列预测模型

Chronos-T5-Large是一个拥有7.1亿参数的大规模时间序列预测模型。该模型基于T5架构,通过将时间序列转化为token序列进行训练,能生成概率性预测。Chronos-T5-Large在大量公开和合成时间序列数据上训练,可处理多种预测任务。研究人员和开发者可通过Python接口使用该模型,适用于需要高精度分析的时间序列场景。

TimeMixer - 多尺度混合技术推动时间序列预测新突破
GithubICLRMLP架构TimeMixer多尺度混合开源项目时间序列预测
TimeMixer是一种基于MLP架构的时间序列预测模型,通过多尺度混合技术实现长短期预测的性能突破。该模型利用Past-Decomposable-Mixing和Future-Multipredictor-Mixing模块处理多尺度时间序列,在多个基准数据集上展现出优异性能。TimeMixer不仅预测精度高,还具备良好的运行效率,适用于多种要求高效预测的应用场景。
neural_prophet - 易用的开源时间序列预测框架
GithubNeuralProphetPyTorch开源项目时间序列预测模型构建
NeuralProphet是一个基于PyTorch的开源框架,将神经网络与传统时间序列算法结合,专为时间序列预测而设计。它提供简便的代码接口,支持模型定制、趋势检测、季节性分析和事件影响评估,适合高频次和长期数据。项目仍在beta阶段,欢迎社区贡献。
flow-forecast - 开源时间序列深度学习框架,支持最新模型和云端集成
Flow ForecastGithubtransformer开源开源项目时间序列预测深度学习
Flow Forecast 是一个开源时间序列预测深度学习框架,提供最新的Transformer、注意力模型、GRU等技术,并具有易于理解的解释指标、云集成和模型服务功能。该框架是首个支持Transformer模型的时间序列框架,适用于流量预测、分类和异常检测。
mlforecast - 高性能可扩展的机器学习时间序列预测框架
GithubMLForecast分布式训练开源项目时间序列预测机器学习特征工程
mlforecast是一个基于机器学习模型的时间序列预测框架,具有高效的特征工程实现和良好的可扩展性。该框架支持pandas、polars、spark等多种数据格式,兼容sklearn API,能够处理海量数据。除了支持概率预测和外生变量,mlforecast还提供分布式训练功能,适用于大规模生产环境的时间序列预测任务。框架采用熟悉的fit和predict接口,便于快速上手和集成到现有项目中。
Crossformer - 高效利用跨维度依赖的多变量时间序列预测模型
CrossformerGithubTransformer开源项目时间序列预测注意力机制深度学习
Crossformer是一种新型Transformer模型,针对多变量时间序列预测设计。该模型采用维度分段嵌入、两阶段注意力机制和层次编码器-解码器结构,有效捕捉时间和维度间的依赖关系。Crossformer在多个基准数据集上表现优异,为长序列预测和高维数据处理提供新思路。其开源实现便于研究人员和实践者探索应用。
nanoT5 - 轻量高效的T5模型训练框架
GithubPyTorchT5模型nanoT5开源项目自然语言处理预训练
nanoT5是一个开源项目,旨在提供高效训练T5模型的方案。该项目在单GPU上仅用16小时就能达到与原始T5模型相当的性能,显著降低了训练成本。nanoT5优化了数据预处理、优化器选择等训练流程,为NLP研究人员提供了易用的研究模板。作为首个PyTorch实现的T5预训练框架,nanoT5为计算资源有限的研究者提供了宝贵工具。
multilingual-e5-large - 大规模多语言文本编码模型,适用于多种NLP任务
GithubHuggingfacemultilingual-e5-large多语言支持开源项目机器学习模型自然语言处理语言模型
multilingual-e5-large是一个支持100多种语言的大规模文本编码模型。该模型在文本分类、检索、聚类和语义相似度等多项自然语言处理任务中表现优异。基于Transformer架构,它能够生成高质量的多语言文本嵌入,适用于各种跨语言NLP应用。在MTEB基准测试中,该模型展现了出色的多语言和多任务处理能力。
moment - 时间序列分析基础模型 多任务多领域应用
GithubMOMENT基础模型多任务开源项目时间序列预训练
MOMENT是一个开源的时间序列分析基础模型家族,为多任务、多数据集和多领域应用而设计。该模型在大规模时间序列数据上预训练,可处理预测、分类、异常检测和插补等任务。MOMENT能捕捉时间序列的内在特征,学习有意义的数据表示,在少量标记数据的情况下也表现出色。项目提供预训练模型、教程和研究代码,为时间序列分析提供了实用工具。
sentence-t5-large - 将句子和段落转化为768维向量的自然语言处理模型
GithubHuggingfacesentence-transformers句子相似度向量空间开源项目文本编码模型语义搜索
sentence-t5-large是一个基于sentence-transformers的自然语言处理模型,能够将句子和段落转换为768维向量。这个模型在句子相似性任务中表现出色,但在语义搜索方面效果一般。它是由TensorFlow的st5-large-1模型转换而来,采用T5-large模型的编码器,并以FP16格式存储权重。使用时需要sentence-transformers 2.2.0或更高版本。该模型在句子嵌入基准测试中取得了良好成绩,为各种自然语言处理任务提供了有力支持。
flan-t5-base - 基于T5架构的多语言文本生成模型
FLAN-T5GithubHuggingface多语言开源项目指令微调模型自然语言处理迁移学习
FLAN-T5 base是基于T5架构的多语言文本生成模型,在1000多个任务上进行了指令微调。该模型支持翻译、问答、推理等自然语言处理任务,在零样本和少样本学习方面表现优异。FLAN-T5 base不仅覆盖多种语言,还能在有限参数下实现与更大模型相当的性能,为研究人员提供了探索语言模型能力和局限性的有力工具。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

稿定AI

稿定设计 是一个多功能的在线设计和创意平台,提供广泛的设计工具和资源,以满足不同用户的需求。从专业的图形设计师到普通用户,无论是进行图片处理、智能抠图、H5页面制作还是视频剪辑,稿定设计都能提供简单、高效的解决方案。该平台以其用户友好的界面和强大的功能集合,帮助用户轻松实现创意设计。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号