Project Icon

heBERT_sentiment_analysis

希伯来语预训练BERT模型实现情感分析和情绪识别

heBERT_sentiment_analysis是一个针对希伯来语的预训练BERT模型,用于情感极性分析和情绪识别。该模型在包含10亿词的希伯来语语料库上训练,能准确识别文本情感。在情感分析任务中,模型表现优异,F1分数达0.97。研究团队还收集了用户生成内容数据集进行情绪标注。这为希伯来语自然语言处理研究提供了有力的基础工具。

heBERT_NER - HeBERT: 专为希伯来语设计的命名实体识别和情感分析模型
GithubHeBERTHuggingface命名实体识别开源项目情感分析情感识别情绪用户生成内容模型
HeBERT是一个基于Google BERT架构的希伯来语模型,通过希伯来语OSCAR、维基百科以及情感用户生成内容数据集进行训练。它能够识别希伯来语文本中的人名、组织和地理位置等命名实体,并在测试中表现出色。此外,HeBERT还支持情感识别和情绪分析,研究人员和开发者可以在Huggingface平台上访问此模型。该工具适合需要进行深入希伯来语文本分析的用户。
hebert-finetuned-hebrew-metaphor - heBERT微调模型实现希伯来语隐喻检测 准确率达95.10%
GithubHuggingfaceheBERT希伯来语开源项目模型模型训练自然语言处理隐喻识别
该项目为基于avichr/heBERT的希伯来语隐喻检测微调模型。模型在HebrewMetaphors数据集上训练,可识别20个希伯来语动词的隐喻用法。经过Adam优化器和线性学习率调度器的训练,模型在验证集上达到95.10%的准确率。这是以色列理工学院电气工程与计算机科学学院研究团队的成果。
sentiment_analysis_model - BERT模型的情感分析应用
BERTGithubHuggingface开源项目情感分析无监督学习模型模型描述预训练
该情感分析模型基于BERT,在大规模英语语料的自监督训练基础上,具备双向语句理解能力,经过精细调优,专注于文本分类任务,该项目微调BERT模型以进行情感分析,可用于自动提取文本中的情感特征。
AraBert-Arabic-Sentiment-Analysis - 基于AraBERT的阿拉伯语情感分析模型实现80%分类准确率
AraBERTGithubHuggingface开源项目情感分析机器学习模型自然语言处理阿拉伯语情感分析
基于AraBERT预训练模型微调的阿拉伯语情感分析模型,在评估数据集上实现了80.03%的准确率和65.43%的宏F1分数。模型采用Adam优化器和线性学习率调度器,使用16的训练批次大小,经过2轮训练得到。基于Transformers框架开发,专注于阿拉伯语文本的情感分类任务。
alephbert-base - 优化希伯来语自然语言处理的先进语言模型
AlephBERTBERT架构GithubHuggingface希伯来语开源项目模型训练数据语言模型
AlephBERT是一个基于Google BERT架构的希伯来语语言模型。这一模型利用了来自OSCAR、Wikipedia以及Twitter的丰富语料,提升了自然语言处理的表现。训练过程中使用了Masked Language Model损失优化策略,提高了效率和准确性。通过Huggingface的Transformer库,用户能够轻松集成这一模型,满足多种自然语言处理需求。
bert-base-arabic-camelbert-da-sentiment - CAMeLBERT-DA阿拉伯语情感分析模型
CAMeLBERT-DAGithubHuggingface开源项目情感分析模型自然语言处理阿拉伯语预训练语言模型
CAMeLBERT-DA情感分析模型是基于阿拉伯方言预训练模型微调而成。该模型利用ASTD、ArSAS和SemEval数据集进行了fine-tuning,可通过CAMeL Tools或transformers pipeline轻松集成使用。模型支持对阿拉伯语文本进行积极和消极的二分类情感分析。这一成果对研究阿拉伯语言模型的变体、规模和任务类型之间的相互作用具有重要意义。
bert-base-arabic-camelbert-mix-sentiment - CAMeLBERT微调的阿拉伯语情感分析模型
CAMeLBERT Mix SAGithubHuggingface开源项目情感分析模型自然语言处理阿拉伯语预训练语言模型
这是一个基于CAMeLBERT Mix模型微调的阿拉伯语情感分析模型。该模型使用ASTD、ArSAS和SemEval数据集进行微调,可通过CAMeL Tools或Transformers pipeline使用。模型能准确分析阿拉伯语句子的情感倾向,对正面和负面情感均有良好识别效果。研究还探讨了语言变体、数据规模和微调任务类型对阿拉伯语预训练语言模型的影响,为该领域提供了有价值的见解。
german-sentiment-bert - 基于BERT架构的德语情感分析模型
BERTGithubHuggingfacePython开源项目德语情感分类机器学习模型自然语言处理
该项目开发了一个基于BERT架构的德语情感分类模型。模型在184万个德语样本上训练,数据来源包括社交媒体和各类评论。提供Python包便于使用,支持情感预测和概率输出。在多个数据集上表现优异,最高F1分数达0.9967。可应用于对话系统等德语情感分析场景。
BERT-Emotions-Classifier - 情感多标签分类的高效工具
BERTGithubHuggingface多标签分类开源项目情感分析情感分类数据集模型
BERT-Emotions-Classifier是一个专注于多标签情感分类的BERT模型,基于sem_eval_2018_task_1数据集训练,能够识别愤怒、恐惧、喜悦等多种情感。适用于社交媒体和客户评论中的情感分析以及基于情感的内容推荐。尽管存在情感类别和输入长度的限制,但该模型在情感分析中表现优异,需注意可能的偏差问题。
bert-base-arabic-finetuned-emotion - bert-base-arabic 模型在情感识别中的应用与优化
GithubHuggingfaceTransformersbert-base-arabic-finetuned-emotion开源项目情感检测文本分类模型阿拉伯文本
本项目展示了一种基于bert-base-arabic的微调情感检测模型,在emotone_ar数据集上实现了74%的准确率和F1分数。该模型通过Transformer技术增强了情感分析能力,适用于阿拉伯语文本处理。用户可以在Hugging Face平台找到此预训练模型,并应用于其自然语言处理任务。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号