Project Icon

heBERT_sentiment_analysis

希伯来语预训练BERT模型实现情感分析和情绪识别

heBERT_sentiment_analysis是一个针对希伯来语的预训练BERT模型,用于情感极性分析和情绪识别。该模型在包含10亿词的希伯来语语料库上训练,能准确识别文本情感。在情感分析任务中,模型表现优异,F1分数达0.97。研究团队还收集了用户生成内容数据集进行情绪标注。这为希伯来语自然语言处理研究提供了有力的基础工具。

sentiment_analysis_generic_dataset - BERT微调模型实现精准文本情感分析
BERTGithubHuggingface开源项目情感分析文本分类模型自然语言处理预训练模型
该项目基于BERT预训练模型,专门针对情感分析任务进行微调。模型使用bert-base-uncased作为基础,通过掩码语言建模和下一句预测技术进行预训练,具备理解双向语境的能力。这种预训练方法使模型能为情感分析等下游任务提供有效特征。值得注意的是,此微调版本仅适用于情感分析,不推荐用于其他任务的进一步调整。
bertweet-base-sentiment-analysis - 英文推文情感分析模型 BERTweet-Sentiment
BERTweetGithubHuggingface开源项目情感分析推特数据机器学习模型模型自然语言处理
bertweet-base-sentiment-analysis是一个基于SemEval 2017语料库训练的英文情感分析模型。它利用BERTweet作为基础,能够识别文本中的积极、消极和中性情感。作为pysentimiento库的组成部分,该开源项目主要面向非商业用途和科研领域,为自然语言处理研究提供了实用的情感分析工具。
bert_turkish_sentiment - 微调TurkishBERTweet的高精度土耳其语情感分析模型
BERTGithubHuggingfaceTurkishBERTweet土耳其语开源项目情感分析模型自然语言处理
该模型基于VRLLab/TurkishBERTweet微调而来,专门用于土耳其语情感分析。在评估集上达到0.9972的高准确率,显示出强大的性能。模型采用Adam优化器,配合线性学习率调度器,经过3轮训练,每批次处理8个样本。虽然在土耳其语文本情感分析方面表现出色,但其具体应用场景和限制仍有待进一步研究。
bert-base-multilingual-uncased-sentiment - BERT多语言产品评论情感预测模型
GithubHuggingfacebert-base-multilingual-uncased产品评论准确率多语言模型开源项目情感分析模型
bert-base-multilingual-uncased-sentiment是一个基于BERT的多语言情感分析模型,支持英、荷、德、法、西、意六种语言的产品评论分析。模型通过1至5星评级预测评论情感,在大规模多语言产品评论数据集上训练。测试结果显示,模型在各语言上均达到较高的准确率,特别是在'差一星'的宽松评估标准下,准确率普遍超过93%。该模型可直接应用于目标语言的产品评论情感分析,也可作为相关任务的预训练模型进行进一步微调。
dictabert-joint - 基于BERT的希伯来语多任务自然语言处理模型
DictaBERTGithubHuggingface希伯来语开源项目模型自然语言处理语法分析语言模型
DictaBERT-joint是一个针对希伯来语的多任务语言处理模型,集成了前缀分割、形态消歧、词形还原、句法分析和命名实体识别功能。模型提供JSON、UD和IAHLT-UD三种数据格式输出,支持按需初始化不同任务模块。
bert-base-uncased-emotion - 情感数据集的高效文本分类模型
F1分数GithubHuggingfacebert-base-uncased-emotion准确率开源项目情感分析文本分类模型
bert-base-uncased模型针对情感数据集的微调结果显示,其在准确率和F1分数分别达到94.05%和94.06%。借助PyTorch和HuggingFace平台,该模型实现高效的情感文本分类,适用于社交媒体内容分析,特别是在Twitter环境中,为数据科学家和开发人员提供情感解析的精确工具。
bert-multilingual-go-emtions - 多语言情感分类模型,支持高效识别28种情感
BERTGithubGoEmotionsHuggingface多语言开源项目情感分类模型模型性能
该BERT模型经过微调,可在GoEmotions数据集上进行中英跨语言情感分类,支持28种情感类别,如喜悦、愤怒、爱等。模型在验证集上表现出85.95%的高准确率,训练过程结合了英语和机器翻译的中文样本,通过两阶段方法提升性能,包含初始训练和高置信度样本回馈再训练。
bertweet-base-emotion-analysis - BerTweet英文情感分析模型集成EmoEvent语料库
BERTweetGithubHuggingface开源项目情感分析数据集机器学习模型自然语言处理
bertweet-base-emotion-analysis是一个基于BerTweet架构的英文情感分析开源模型,通过EmoEvent语料库训练而成。作为pysentimiento库的组成部分,该模型支持英文文本的情感识别与分析,主要应用于学术研究领域。该模型结合预训练语言模型技术,为自然语言处理研究提供了实用的情感分析工具。
cryptobert - 预训练NLP模型用于加密货币社交媒体情感分析
CryptoBERTGithubHuggingfaceNLP加密货币开源项目情感分析模型社交媒体
CryptoBERT是针对加密货币社交媒体的情感分析预训练NLP模型,基于vinai's bertweet-base模型在加密货币领域训练而成。它分析超过320万个相关帖子,并针对熊市、中性与牛市进行了情感微调,使用了200万条标记数据以实现高准确性。虽技术上可处理514个token序列,但建议使用128个token以内。此项目在比特币、以太坊等数字货币的情感分析中表现卓越。
robust-sentiment-analysis - 使用distilBERT的情感分析模型,实现对社交媒体和客户反馈的精确分析
GithubHuggingfacedistilBERT合成数据客户反馈开源项目情感分析模型社交媒体分析
模型基于distilBERT结构并利用合成数据训练,可精确解析社交媒体、客户反馈和产品评价的情感变化。适用于品牌监测、市场研究和客户服务优化,支持五个情感分类,准确率达95%。帮助企业有效识别用户情绪动向。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号