Project Icon

gluonts

基于深度学习的概率时间序列建模工具包

GluonTS是一个基于Python的时间序列建模库,专注于采用深度学习方法进行概率预测。支持多种深度学习框架,包括PyTorch和MXNet,提供易于安装和使用的特性。适用于多种应用场景,如商业分析和数据科学。由一个积极的开源社区维护和发展。

GeoTorchAI - 基于PyTorch的空间时序深度学习框架
GeoTorchAIGithubPyTorch卫星图像分类开源项目深度学习框架空间时序数据
GeoTorchAI是基于PyTorch和Apache Sedona的空间时序深度学习框架,专为遥感影像和时空数据分析设计。该框架提供数据集、模型、转换和预处理模块,支持栅格和网格数据处理。它可应用于遥感影像分类、分割,以及交通流量、天气预报等时空数据预测任务。GeoTorchAI通过pip安装,并提供示例代码,方便研究人员和开发者快速上手使用。
chronos-t5-large - 基于T5架构的大规模时间序列预测模型
Chronos-T5GithubHuggingface开源项目时间序列预测概率预测模型语言模型预训练模型
Chronos-T5-Large是一个拥有7.1亿参数的大规模时间序列预测模型。该模型基于T5架构,通过将时间序列转化为token序列进行训练,能生成概率性预测。Chronos-T5-Large在大量公开和合成时间序列数据上训练,可处理多种预测任务。研究人员和开发者可通过Python接口使用该模型,适用于需要高精度分析的时间序列场景。
Time-Series-Works-Conferences - 全面的时间序列研究与预测资源集合
Github开源项目数据分析时间序列机器学习深度学习预测
这是一个汇集时间序列研究最新进展的资源库,整合了多领域的论文、代码和会议信息。项目涵盖多变量预测、概率预测、数据插补和异常检测等任务,提供详细的论文分类和方法总结。同时收录了相关数据集和开源代码,为时间序列研究提供全面的参考。
mlgb - 多模型支持的CTR预测和推荐系统库
CTR预测GithubMLGB开源项目推荐系统机器学习深度学习模型
MLGB是一个Python库,集成了50多种CTR预测和推荐系统模型,兼容TensorFlow和PyTorch框架。该库提供简洁的API,方便快速调用复杂模型。通过代码优化,MLGB实现了高效性能,为研究和工程实践提供了多样化的模型选择。
OpenSTL - OpenSTL:时空预测学习的全面基准和模块化框架
GithubNeurIPS 2023OpenSTLPyTorch开源项目数据集时空预测
OpenSTL是一个全面的时空预测学习基准,涵盖了从合成运动物体轨迹到人体运动、驾驶场景、交通流量和天气预报的多样任务。该框架模块化设计并具有良好的扩展性,支持PyTorch Lightning和原始PyTorch实现。其主要功能包括灵活的代码设计和标准基准,组织严密并易于使用。
chronos-t5-base - T5架构驱动的时间序列预测基础模型
ChronosGithubHuggingfaceT5架构开源项目时间序列预测概率预测模型语言模型
Chronos-T5-Base是一个基于T5架构的时间序列预测基础模型,拥有2亿参数。该模型将时间序列数据转化为token序列,并通过交叉熵损失函数进行训练。通过采样多个可能的未来轨迹,Chronos-T5-Base能够生成概率预测结果。模型在大量公开时间序列数据和合成数据上训练,适用于多种时间序列预测场景,为研究人员和开发者提供了一个强大的预训练工具。
chronos-t5-large - T5架构驱动的大规模时间序列预测基础模型
ChronosGithubHuggingfaceT5架构开源项目时间序列预测概率预测模型预训练模型
Chronos-T5-Large是一个大规模时间序列预测基础模型,基于T5架构设计,包含7.1亿参数。模型通过将时间序列转换为token序列进行训练,能够生成概率性预测结果。它在海量公开时间序列数据和合成数据上训练,适用于广泛的时间序列预测任务。研究人员可使用简洁的Python接口调用模型,获取未来趋势预测及相应的置信区间。
Time-Series-Analysis-with-Python-Cookbook - Python时间序列分析与预测实战指南
GithubPython开源项目数据科学时间序列分析机器学习预测
这本书全面介绍Python时间序列分析和预测技术,涵盖数据获取、预处理和高级建模。内容包括统计方法、机器学习和深度学习算法,以及使用TensorFlow、PyTorch等框架进行预测。通过实用代码示例和案例研究,读者可以学习处理复杂时间序列数据、进行异常检测,并解决实际业务问题。适合数据分析师和开发者提升时间序列分析技能。
Merlion - 全面的时间序列智能分析库
GithubMerlion开源项目异常检测时间序列机器学习预测
Merlion是一个功能丰富的Python时间序列分析库,集成了预测、异常检测和变点检测等多项能力。它支持单变量和多变量时间序列,提供标准化数据处理、多种算法模型、自动调参、外部变量支持等特性。Merlion还包含实用的后处理规则和灵活的评估流程,可帮助快速开发和基准测试时间序列模型。
chronos-t5-small - 基于T5架构的时间序列预测模型
Chronos-T5GithubHuggingface开源项目时间序列预测概率预测模型语言模型架构预训练模型
Chronos-T5-Small是一款基于T5架构的预训练时间序列预测模型。该模型将时间序列转换为标记序列,通过交叉熵损失训练语言模型实现预测。经过大量公开时间序列数据和合成数据的训练,Chronos-T5-Small能够生成概率性预测结果。作为Chronos系列中的中等规模版本,这个拥有4600万参数的模型适用于多种时间序列预测任务。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

稿定AI

稿定设计 是一个多功能的在线设计和创意平台,提供广泛的设计工具和资源,以满足不同用户的需求。从专业的图形设计师到普通用户,无论是进行图片处理、智能抠图、H5页面制作还是视频剪辑,稿定设计都能提供简单、高效的解决方案。该平台以其用户友好的界面和强大的功能集合,帮助用户轻松实现创意设计。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号