Project Icon

Bespoke-MiniCheck-7B

文档核实模型的优化技术与高质量数据策展效果

由Bespoke Labs开发的Llama-3.1-Bespoke-MiniCheck-7B模型,应用高质量数据策展技术,提升了长文本事实核查的精准度。该模型从internlm2_5-7b-chat微调,集成了35K个数据点,包括ANLI示例与合成生成数据,以增强泛化能力。尽管体积小,该模型在LLM-AggreFact基准测试中表现卓越,自动前缀缓存功能提升了推理速度,在高负载下保持出色的文档处理能力。

Skywork-Reward-Llama-3.1-8B-v0.2 - 小型数据集训练的高性能奖励模型实现卓越偏好处理
GithubHuggingfaceReward ModelSkywork人工智能大语言模型开源项目数据集模型
Skywork-Reward-Llama-3.1-8B-v0.2是基于Llama-3.1-8B-Instruct架构的奖励模型,通过80K高质量偏好对数据集训练而成。该模型在复杂场景中展现出优秀的偏好处理能力,在数学、编程和安全等领域表现出色。在RewardBench排行榜上,它在8B模型中排名第一。这一成果证明了经过精心筛选的小型数据集也能用于训练高性能奖励模型。
orca_mini_v3_13b - 增强文本生成的Orca与Llama2结合模型
GithubHuggingfaceorca_mini_v3_13b开源项目数据集文本生成模型模型评估语言模型
orca_mini_v3_13b项目利用Orca风格数据集和Llama2-13b模型的结合,实现高效文本生成。该模型在多项任务中表现卓越,如AI2推理挑战达到63.14%的准确率,HellaSwag则达到82.35%。此设计在多语言及复杂生成任务中具有显著优势。依照Llama-2的许可证规范使用,保证合规性。
Llama-3.1-70B - Meta Llama 3.1 突破性多语言大模型 支持128K上下文
GithubHuggingfaceMeta人工智能多语言大语言模型开源项目模型自然语言处理
Llama 3.1是Meta推出的最新多语言大型语言模型系列,包含8B、70B和405B三种参数规模。模型采用优化的Transformer架构并经指令微调,在多语言对话场景中表现卓越。Llama 3.1具备128K上下文窗口,能够生成文本和代码,广泛适用于商业和研究领域。在众多行业基准测试中,Llama 3.1展现出优异性能,超越了大量主流开源和专有对话模型。
TinyLlama-1.1B-intermediate-step-955k-token-2T - 探讨紧凑型1.1B参数模型的高效预训练
GithubHuggingfaceTinyLlama参数开源项目模型计算预训练
TinyLlama项目目标是在3万亿标记上预训练一个具备1.1B参数的Llama模型。通过优化技术,该项目可在90天内使用16个A100-40G GPU完成训练。采用与Llama 2相同的架构和分词器,确保与其他开源项目的兼容性。TinyLlama的紧凑设计适合计算和内存受限的应用。该项目于2023年9月1日启动,计划在2023年12月1日前完成,并会逐步发布中间检查点。详细信息请查看TinyLlama GitHub页面。
Llama-3.2-3B - Meta推出Llama 3.2多语言大型语言模型系列
GithubHuggingfaceLlama 3.2Meta人工智能多语言大语言模型开源项目模型
Llama-3.2-3B是Meta开发的多语言大型语言模型,支持8种语言,包括英语和德语。模型采用优化的Transformer架构,通过监督微调和人类反馈强化学习训练而成。它可用于对话、知识检索和摘要等任务,具有128K的上下文长度,并使用分组查询注意力机制提高推理效率。Llama-3.2-3B适用于商业和研究用途,可进一步微调以适应各种自然语言生成任务。模型遵循Llama 3.2社区许可协议。
Llama-3.1-Nemotron-70B-Instruct-HF - NVIDIA定制Llama 3.1模型提升AI回答质量
GithubHuggingfaceLlama-3.1-Nemotron-70B-InstructNVIDIA人工智能大型语言模型开源项目模型自然语言处理
Llama-3.1-Nemotron-70B-Instruct-HF是NVIDIA基于Llama 3.1定制的大语言模型,旨在提高AI回答的实用性。该模型在Arena Hard、AlpacaEval 2 LC和MT-Bench等自动评估基准上表现优异,超越了GPT-4和Claude 3.5等主流模型。通过RLHF技术训练,该模型能够准确回答问题并提供有价值的回应。开发者可以使用Hugging Face Transformers库部署该模型,但需要至少2个80GB GPU支持。
MicroLlama - 预算内的大规模语言模型构建:300M Llama模型的探索
GithubHuggingfaceMicroLlamahuggingface开源开源项目文本生成模型语言模型
该项目在有限预算内,通过全面开源的方法构建了一个300M Llama语言模型。尽管性能不及更大型的模型,但以不到500美元的投入,在多数据集上表现出色,并在与类似参数的BERT模型比较时展现优势。项目使用Vast.ai的计算资源和AWS S3存储,对TinyLlama模型进行了调整,重点优化Slimpajama数据集。这一项目展示了低成本大规模模型开发的潜力,并为细化应用如轻量级聊天机器人提供了坚实基础。
Llama-3.1-405B - Meta开发的多语言大规模语言模型集合,支持商业和研究使用
GithubHuggingfaceLlama 3.1人工智能多语言大语言模型开源项目模型自然语言处理
Llama 3.1是Meta开发的多语言大型语言模型系列,提供8B、70B和405B三种规模。模型采用优化的Transformer架构,支持128k上下文长度,使用分组查询注意力机制提升推理效率。经指令微调后,可用于多语言对话等场景,在行业基准测试中表现出色。支持8种语言,适用于商业和研究用途,如助手式聊天和自然语言生成等任务。
llama-3 - 提升对话生成效果的指令调优语言模型
GithubHuggingfaceLlama 3Meta开源项目指导调整模型语言模型责任与安全
Llama 3是由Meta开发的大型语言模型家族,提供8B和70B参数选项,经过预训练和指令调优,专为对话生成优化。模型采用Transformer架构,并通过监督微调和人类反馈强化学习,实现与人类偏好的对齐。Llama 3于2024年4月18日发布,提供商用许可证,用于商业与研究,需遵循相关使用政策。
MiniLM-L12-H384-uncased - 轻量快速的预训练语言模型实现BERT级别性能表现
BERTGithubHuggingfaceMiniLM开源项目模型模型压缩深度学习自然语言处理
MiniLM-L12-H384-uncased通过模型压缩技术将参数量降至33M,在保持与BERT相当性能的同时,运行速度提升2.7倍。模型在SQuAD 2.0和GLUE等自然语言理解任务中表现出色,可直接替代BERT,适用于对模型体积和运行效率敏感的场景。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号