Project Icon

Bespoke-MiniCheck-7B

文档核实模型的优化技术与高质量数据策展效果

由Bespoke Labs开发的Llama-3.1-Bespoke-MiniCheck-7B模型,应用高质量数据策展技术,提升了长文本事实核查的精准度。该模型从internlm2_5-7b-chat微调,集成了35K个数据点,包括ANLI示例与合成生成数据,以增强泛化能力。尽管体积小,该模型在LLM-AggreFact基准测试中表现卓越,自动前缀缓存功能提升了推理速度,在高负载下保持出色的文档处理能力。

neural-chat-7b-v3-1 - 在英特尔Gaudi2上优化的mistralai 7B语言模型
GithubHuggingfaceIntel Gaudi 2大语言模型开源项目数据集模型模型微调量化推理
neural-chat-7b-v3-1模型经过优化,利用mistralai/Mistral-7B-v0.1基础模型和DPO方法,适用于多种语言任务。结合Open-Orca/SlimOrca数据集,提升了ARC、HellaSwag与TruthfulQA等多项评估指标表现,并支持INT4、BF16等多种推理模式。非常适合高性能语言生成与处理应用,详细信息和使用指导可在GitHub和Hugging Face Leaderboard上查看。
Llama3.1-70B-Chinese-Chat - 中英双语优化的Llama3.1-70B指令微调模型
GithubHuggingfaceLlama3.1-70B-Chinese-Chat开源项目文本生成模型细致调整角色扮演语言模型
项目基于Meta-Llama-3.1-70B-Instruct模型,优化针对中英用户,支持角色扮演、函数调用和数学能力。模型使用超10万偏好对数据集训练,提供q3_k_m、q4_k_m、q8_0和f16 GGUF版本。使用ORPO算法进行全参数微调,并基于LLaMA-Factory框架。用户需升级transformers库以下载使用BF16模型,亦可使用GGUF模型进行多种方式推理。
Meta-Llama-3.1-70B-Instruct-AWQ-INT4 - Llama 3.1 70B指令模型INT4量化版 多语言对话优化
AutoAWQGithubHuggingfaceMeta Llama 3.1大语言模型开源项目推理模型量化
Meta AI的Llama 3.1 70B指令模型经社区量化为INT4精度,显著降低内存需求。这一多语言模型针对对话场景优化,在行业基准测试中表现优异。支持通过Transformers、AutoAWQ、TGI和vLLM等多种方式部署使用,为开发者提供灵活选择。
TinyLlama-1.1B-intermediate-step-715k-1.5T - 紧凑型AI模型的快速训练与高效优化
GPUGithubHuggingfaceLlama模型TinyLlama参数紧凑性开源项目模型预训练
TinyLlama项目在90天内利用16台A100-40G GPU完成了1.1B参数模型的预训练,涉及3万亿个令牌。该模型因其紧凑和模块化设计,适用于资源有限的多种应用场合。最新的中间检查点提供了715K步和1.49T令牌的参数,评估基准上表现均有提升。详情请访问TinyLlama GitHub页面。
llama-7b-hf - LLaMA-7B模型在自然语言处理和AI研究中的应用
GithubHuggingfaceLLaMA开源项目模型模型评估自动回归模型自然语言处理补充授权
LLaMA-7B是Meta AI的FAIR团队开发的自回归语言模型,基于转换器架构拥有7B参数,主要用于研究大语言模型的可能性。模型改进了解决EOS标记问题,并通过多数据集如CCNet、C4和Wikipedia进行训练,展现出语言间和方言间的性能差异,适合问答和自然语言理解等应用场景。仅限获授权的非商业研究使用,更多信息请参考Meta AI的研究出版物。
Llama-3-Smaug-8B - Llama-3-Smaug-8B借助Smaug配方优化多轮对话
Abacus.AIGithubHuggingfaceLlama-3-Smaug-8B多轮交互开源项目模型模型评估真实对话
Llama-3-Smaug-8B模型利用Smaug配方优化多轮对话性能,由Abacus.AI基于Meta Llama 3开发和精调,并从Meta-Llama-3-8B-Instruct模型衍生。该模型在MT-Bench评估中表现突出,平均得分达到8.33,优于基础模型的8.10。目前使用新技术和数据,具体信息尚待公布,历史背景可参考Smaug-72B文献。
Llama-3.2-1B-Instruct-GGUF - 多语言大型语言模型提升对话与摘要任务表现
GithubHuggingfaceLlama 3.2Meta多语言大语言模型开源项目模型社区许可协议
Meta的多语言大模型Llama 3.2支持多种语言,优化对话与摘要任务。模型提供1B和3B版本,通过监督微调和人类反馈强化学习提升互动有用性与安全性。采用优化的Transformer架构,并利用Grouped-Query Attention提升推理能力。开发者可以根据需求进行模型微调。模型发布于2024年9月25日,采用商用许可协议,建议在商业与研究中谨慎使用。
Llama-3_1-Nemotron-51B-Instruct - NVIDIA开发的高效大语言模型
GithubHuggingfaceLlama-3人工智能大语言模型开源项目模型神经网络架构搜索蒸馏
Llama-3_1-Nemotron-51B-Instruct是NVIDIA开发的大语言模型,采用神经架构搜索方法平衡准确性和效率。该模型内存占用低,可在单个H100-80GB GPU上运行大型工作负载。模型在英语对话和编程方面表现出色,也支持非英语语言。经过安全评估和对抗性测试,适合商业应用。
Llama-3.2-11B-Vision-Instruct-bnb-4bit - Llama 3.2视觉语言模型的4bit优化版实现快速低资源微调
GithubHuggingfaceLlama 3.2Meta大语言模型开源项目模型模型微调深度学习
Llama 3.2系列模型的4bit优化版专注多语言对话和视觉语言处理。Unsloth优化提升训练速度2.4倍,节省58%内存。支持8种官方语言,适用对话生成、检索和总结任务。采用优化Transformer架构,通过SFT和RLHF实现人类偏好对齐,保证高效性能和安全性。该版本为开源社区提供了更易于部署和微调的Llama 3.2模型选择。
Llama-2-7B-Chat-GGUF - Llama 2对话模型的量化版本 支持多种推理环境
GGUFGithubHuggingfaceLlama 2人工智能大语言模型开源项目模型量化
Llama-2-7B-Chat-GGUF是Meta公司Llama 2对话模型的GGUF格式量化版本。该模型在保持性能的同时显著减小了体积,支持CPU和GPU推理。提供多种量化精度选择,适用于聊天机器人、问答系统等对话场景。作为开源大语言模型,它具有良好的效率和精确度。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号