Project Icon

scaling_on_scales

为视觉模型实现多尺度特征提取的机制

S²-Wrapper是一种为视觉模型实现多尺度特征提取的机制。项目提供PyTorch实现,探讨图像尺度缩放与模型规模缩放的效果对比。S²-Wrapper已集成到LLaVA和NVIDIA VILA等多模态模型中,提升了多项视觉任务性能。项目包含使用指南和示例,便于研究人员和开发者应用。

scalecast - 功能全面的时间序列预测Python库
GithubPython库Scalecast开源项目数据可视化时间序列预测机器学习
Scalecast是一个功能全面的时间序列预测Python库。它提供统一的机器学习建模接口,支持LSTM、ARIMA等多种模型类型。该库集成了自动特征选择、超参数调优、模型堆叠等功能,并提供便捷的数据可视化工具。Scalecast致力于简化复杂的时间序列预测任务,适用于不同规模的预测项目。
VisualRWKV - 结合RWKV的创新视觉语言模型
GithubRWKVVisualRWKV开源项目微调视觉语言模型预训练
VisualRWKV是一个创新的视觉语言模型,基于RWKV架构设计,可处理多样化的视觉任务。该模型采用两阶段训练策略:首先进行预训练,利用预训练数据集训练视觉编码器到RWKV的投影层;随后进行微调,通过视觉指令数据优化模型性能。项目提供完整的训练指南,涵盖数据准备、模型获取和训练流程,支持多GPU并行和不同规模RWKV模型的训练。
LeYOLO - 可扩展高效的目标检测CNN架构
COCO数据集GithubLeYOLO开源项目目标检测神经网络计算效率
LeYOLO是一种新型目标检测模型系列,通过创新的CNN架构设计实现了计算效率与准确性的优化平衡。该模型引入高效主干网络缩放、快速金字塔架构网络和解耦网络中的网络检测头,大幅降低计算负载。在COCO验证集上,LeYOLO-Small仅使用4.5 GFLOP就达到38.2%的mAP,比YOLOv9-Tiny减少42%计算量。LeYOLO系列具有强大可扩展性,适用于从超低计算需求(<1 GFLOP)到高效高性能(>4 GFLOPs)的多种场景。
llama2_xs_460M_experimental - 了解LLaMA与LLaMa 2的小型实验版本及其精简模型参数
GithubHuggingfaceLLaMa 2MMLUTokenization大模型开源开源项目模型
项目呈现Meta AI的LLaMA与LLaMa 2开源重现版本,并采用缩小的模型参数:llama1_s为1.8B,llama2_xs为460M。训练基于RedPajama数据集,使用GPT2Tokenizer分词,支持通过HuggingFace Transformers库直接加载以及文本生成。模型在MMLU任务中表现评估,其中llama2_xs_460M在0-shot和5-shot中分别得21.13和26.39的分数。
dlwpt-code - 深入浅出PyTorch深度学习指南
Deep Learning with PyTorchGithubPyTorch开源项目机器学习深度学习编程
《Deep Learning with PyTorch》通过实际项目展示深度学习的基础知识,适合希望掌握PyTorch的开发者、计算机科学家、数据科学家及相关专业学生。书中提供了对深度学习的直观理解,并深入探讨PyTorch的部分功能,适合具备编程基础的读者。作者团队拥有丰富的实践经验和开源项目贡献,确保内容实用且前沿。
FeatUp - 提升任意模型特征空间分辨率的框架
FeatUpGithubICLR 2024分辨率提升开源项目模型无关框架特征上采样
FeatUp是一个模型无关的特征提升框架,可将任意模型的特征空间分辨率提高16-32倍,同时保持语义一致性。该框架支持DINO、CLIP和ResNet50等多种预训练模型,适用于图像分割、目标检测等视觉任务。FeatUp提供简洁的API接口和开源代码,为计算机视觉研究和应用开辟了新途径。
deep-learning-v2-pytorch - 深度学习教程与项目实战指南
Deep LearningGithubPyTorch卷积神经网络开源项目生成对抗网络神经网络
本仓库提供 Udacity 深度学习 v7 纳米学位课程的相关资料,包括各种深度学习主题的教程笔记本,涉及卷积神经网络、循环神经网络和生成对抗网络等模型的实现。内容涵盖权重初始化、批量归一化等技术,用户还可以访问项目起始代码,并学习在 AWS SageMaker 上部署模型。
SupContrast - 监督对比学习框架增强视觉表征
GithubSupContrast图像分类对比学习开源项目损失函数监督学习
SupContrast是一个开源的监督对比学习框架,致力于提升视觉表征学习效果。该项目实现了监督对比学习和SimCLR算法,在CIFAR数据集上展现出色性能。它提供简洁的损失函数实现,支持自定义数据集,并附有详细运行指南和可视化结果。在ImageNet上,SupContrast实现了79%以上的Top-1准确率。这一工具为计算机视觉领域的研究和应用提供了重要支持。
GeoSeg - 遥感图像语义分割框架 支持多种数据集和先进模型
GeoSegGithubVision Transformer开源项目深度学习语义分割遥感图像
GeoSeg是一个开源的遥感图像语义分割工具箱,基于PyTorch等框架开发。它专注于先进视觉Transformer模型,支持多个遥感数据集,提供统一训练脚本和多尺度训练测试功能。项目实现了Mamba、Vision Transformer和CNN等多种网络架构,为遥感图像分割研究提供统一基准平台。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号