Project Icon

bert-base-uncased-emotion

情感数据集的高效文本分类模型

bert-base-uncased模型针对情感数据集的微调结果显示,其在准确率和F1分数分别达到94.05%和94.06%。借助PyTorch和HuggingFace平台,该模型实现高效的情感文本分类,适用于社交媒体内容分析,特别是在Twitter环境中,为数据科学家和开发人员提供情感解析的精确工具。

fast-bert - 快速训练和部署BERT与XLNet文本分类模型的深度学习库
Fast-BertGithub开源项目文本分类深度学习自然语言处理预训练模型
fast-bert是一个深度学习库,用于训练和部署基于BERT和XLNet的文本分类模型。它支持多类和多标签分类,提供数据处理、模型训练、参数调优和部署功能。该库集成了LAMB优化器和学习率查找器,旨在简化最新自然语言处理技术的应用过程。fast-bert适用于各类文本分类任务,能够帮助开发者快速构建高性能模型。
torchMoji - 基于表情符号的情感分析深度学习模型
DeepMojiGithubTorchMoji开源项目情感分析深度学习自然语言处理
TorchMoji是PyTorch实现的DeepMoji模型,通过分析12亿条带表情符号的推文来理解语言表达情感的方式。该模型利用迁移学习在多个情感相关的文本建模任务中实现了优秀性能。项目包含预训练模型、数据处理工具和示例代码,方便研究者和开发者将情感分析应用于各种文本理解任务。TorchMoji模型可用于情感分类、情感强度预测和讽刺检测等任务,为自然语言处理研究和应用提供了有力工具。
speech-emotion-recognition - 开源多模型语音情感识别系统
Emo-db数据集Github开源项目机器学习模型深度学习模型特征提取语音情感识别
speech-emotion-recognition是一个开源的语音情感识别系统,基于Emo-db数据集开发。该项目支持SVM、随机森林、神经网络、CNN和LSTM等多种机器学习和深度学习模型。系统使用Python实现,提供完整的数据预处理、特征提取和模型训练工作流程。项目设计简单易用,适合研究人员和开发者进行语音情感分析的研究和应用开发。该系统可应用于客户服务、情感计算、人机交互等领域,具有模型多样化、使用灵活、易于扩展等优点。
bertweet-tb2_ewt-pos-tagging - Twitter词性标注模型,提升标注准确性
GithubHuggingfaceTweebankNLPTweetTokenizerTwitter开源项目模型社交媒体分析词性标注
该项目提供了适用于Tweebank V2基准的Twitter词性标注模型,准确率达95.38%,结合Tweebank-NER与English-EWT数据进行训练,支持社交媒体分析。使用前需通过TweetTokenizer进行tweets预处理以获得最佳效果。
indonesia-bert-sentiment-classification - 基于IndoBERT模型的印尼情感分类工具
GithubHuggingfaceIndoBERTIndonesian BERT Base Sentiment ClassifierProsa情感数据集text-classification开源项目情感分析模型
基于IndoBERT和Prosa数据集的模型,提供印尼语文本情感分析与分类,准确识别正面、中立和负面情绪,适用于自然语言处理任务。
distilcamembert-base-sentiment - DistilCamemBERT-Sentiment揭示法语情感分析的高效选择
CamemBERTDistilCamemBERTGithubHuggingface开源项目情感分析模型模型压缩法语
DistilCamemBERT-Sentiment是一种优化的法语情感分析模型,通过使用Amazon Reviews和Allociné数据集微调,降低偏差。相较其他基于CamemBERT的方案,该模型缩短了推断时间,并在精确度和top-2准确率上表现良好,适合用于高效生产环境。
bert-base-multilingual-uncased - BERT多语言预训练模型支持102种语言的自然语言处理
BERTGithubHuggingface多语言模型开源项目机器学习模型自然语言处理预训练
bert-base-multilingual-uncased是基于102种语言的维基百科数据预训练的BERT模型。它采用掩码语言建模进行自监督学习,可支持多语言自然语言处理任务。该模型不区分大小写,适用于序列分类、标记分类和问答等下游任务。通过在大规模多语言语料库上预训练,模型学习了多语言的双向语义表示,可通过微调适应特定任务需求。
distilroberta-finetuned-financial-news-sentiment-analysis - DistilRoBERTa模型实现高精度金融新闻情感分析
DistilRobertaGithubHuggingface开源项目机器学习模型自然语言处理金融情感分析金融新闻
这是一个基于distilroberta-base微调的金融新闻情感分析模型。它在金融短语库数据集上训练,达到98.23%的准确率。模型结构包含6层、768维和12个注意力头,共8200万参数,运行速度是RoBERTa-base的两倍。该模型能够有效分析金融新闻的情感倾向,为金融分析和决策提供参考。
bert-base-NER - 基于BERT的高性能命名实体识别模型用于精准NER任务
BERTCoNLL-2003GithubHuggingface命名实体识别开源项目机器学习模型自然语言处理
bert-base-NER是一个基于BERT的预训练模型,专门用于命名实体识别任务。该模型在CoNLL-2003数据集上进行微调,能够识别地点、组织、人名和杂项四类实体。在NER任务中,bert-base-NER展现出优秀性能,F1分数达92.59%。模型提供简洁接口,可广泛应用于各类自然语言处理场景。
DeepMoji - 情感分析模型,基于12亿推文训练,支持迁移学习与多情感预测
DeepMojiGithubKerastorchMoji开源项目情感分析机器学习
DeepMoji是一个情感分析模型,基于12亿推文数据训练,可通过迁移学习在多种情感任务中表现出色。项目包含代码示例和预训练模型,兼容Python 2.7和Keras框架,适用于情感预测和文本编码。还提供了PyTorch实现,用户可使用不同模块进行数据处理、模型微调和测试。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号