Project Icon

edward

用于概率建模、推断和模型评估的Python库

Edward 是一个用于概率建模、推断和模型评估的Python库。它融合了贝叶斯统计、机器学习、深度学习和概率编程,支持多种模型,如有向图模型、神经网络、隐式生成模型和贝叶斯非参数。Edward 提供变分推断、蒙特卡罗方法、生成对抗网络等多种推断方法,并支持模型和推断的评估。构建于TensorFlow之上,支持计算图、分布式训练、CPU/GPU集成和自动微分。

spyder - 强大的Python科学计算集成开发环境
GithubPythonSpyder开发环境开源软件开源项目科学计算
Spyder是一个开源的Python科学计算集成开发环境,集成了编辑、调试和分析等功能。它为数据科学家、研究人员和工程师提供了全面的工具集,支持多种操作系统。Spyder具有直观的界面和高效的编程体验,有助于用户进行科学计算和数据分析。该项目持续更新,拥有活跃的社区支持,是Python科学计算领域的重要工具。
neuralforecast - 先进的神经网络时间序列预测模型库
GithubNeuralForecast开源项目时间序列机器学习深度学习预测模型
NeuralForecast 提供 30 多种先进的神经网络模型,提升时间序列预测的准确性和效率。支持外生变量和静态协变量,并具备自动超参数优化和可解释性方法。通过 sklearn 语法 `.fit` 和 `.predict` 实现快速训练和预测,包含 NBEATSx 和 NHITS 等最新实现,并与 Ray 和 Optuna 集成,适用于多种应用场景。
sagemaker-python-sdk - 使用常见深度学习框架和Amazon优化算法在SageMaker上训练和部署模型
Apache MXNetGithubSageMakerSageMaker Python SDKTensorFlow开源项目机器学习
SageMaker Python SDK是一个开源库,用于在Amazon SageMaker上训练和部署机器学习模型。支持包括Apache MXNet和TensorFlow在内的主流深度学习框架,并优化了适用于SageMaker和GPU训练的Amazon算法。还支持用户使用自定义的Docker容器进行模型的训练和托管。提供详细的文档和API参考指南,介绍如何安装、使用和配置该SDK。兼容操作系统包括Unix/Linux和Mac,并支持Python 3.8到3.11版本。
tensorflow-federated - 隐私保护的分布式机器学习框架
GithubTensorFlow Federated分散数据开源框架开源项目机器学习联邦学习
TensorFlow Federated是一个开源框架,用于分布式数据的机器学习和计算。它提供高级和低级API,允许开发者在保护隐私的同时利用分散数据进行模型训练和评估。支持自定义联邦学习算法,包含单机模拟环境,适合研究和实验。除了预测模型训练,还可用于分布式数据的聚合分析。
neural_prophet - 易用的开源时间序列预测框架
GithubNeuralProphetPyTorch开源项目时间序列预测模型构建
NeuralProphet是一个基于PyTorch的开源框架,将神经网络与传统时间序列算法结合,专为时间序列预测而设计。它提供简便的代码接口,支持模型定制、趋势检测、季节性分析和事件影响评估,适合高频次和长期数据。项目仍在beta阶段,欢迎社区贡献。
fairness-indicators - Tensorflow 的公平性评估和可视化工具包
Fairness IndicatorsGithubTensorflow二分类和多分类分类器公平性指标开源项目模型评估
Fairness Indicators支持团队评估和改进模型的公平性,适用于二元和多分类模型。通过TensorFlow工具包,可以计算常见的公平性指标,并分析数据集分布及模型性能。该工具能处理大规模数据集,并提供信心区间和多阈值评估功能。Fairness Indicators与TensorFlow Data Validation、TensorFlow Model Analysis和What-If Tool紧密集成,助力优化模型。
scikit-learn - Python机器学习的核心工具库
GithubPythonscikit-learn开源项目数据科学机器学习
scikit-learn是基于SciPy构建的Python机器学习库,提供高效的数据挖掘和分析工具。支持分类、回归、聚类等多种机器学习任务,自2007年启动以来由志愿者维护,已成为广受欢迎的开源项目。其特点包括易用性、高性能和完善的文档,在学术和工业领域得到广泛应用。
baal - 贝叶斯主动学习库助力深度学习优化
BaalGithub不确定性估计主动学习开源项目深度学习蒙特卡洛方法
Baal是一个开源的贝叶斯主动学习库,适用于工业应用和研究场景。该库提供多种主动学习方法,如蒙特卡洛Dropout和深度集成。Baal框架由四个核心组件构成,使实现主动学习流程变得简单高效。支持Python 3.8及以上版本,可通过pip或Poetry安装。Baal能有效减少数据标注工作量,提升模型性能,是机器学习领域的实用工具。
deepmd-kit - 深度学习驱动的原子势能建模与分子动力学模拟工具
DeePMD-kitGithub分子动力学势能模型开源项目深度学习高性能计算
DeePMD-kit是一个用Python和C++编写的软件包,专注于简化深度学习原子势能模型和力场的创建和分子动力学模拟。它与TensorFlow及多个高性能MD和量子MD软件包接口,确保高效的训练和计算。模块化设计使其支持多种描述符和高性能并行计算,适用于有机分子、金属、半导体等系统。
chainer - Python深度学习框架,支持动态计算图和CUDA加速
CUDAChainerCuPyGithub开源项目深度学习自动微分
Chainer是一个Python深度学习框架,提供基于define-by-run方法的自动微分API(动态计算图)和面向对象的高级API,用于构建和训练神经网络。通过CuPy支持CUDA/cuDNN,实现高性能训练和推理。尽管Chainer已进入维护阶段,仅进行bug修复和维护,但其文档、教程和社区资源仍然活跃,适合研究和开发深度学习模型的用户。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

稿定AI

稿定设计 是一个多功能的在线设计和创意平台,提供广泛的设计工具和资源,以满足不同用户的需求。从专业的图形设计师到普通用户,无论是进行图片处理、智能抠图、H5页面制作还是视频剪辑,稿定设计都能提供简单、高效的解决方案。该平台以其用户友好的界面和强大的功能集合,帮助用户轻松实现创意设计。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号