Project Icon

IQA-PyTorch

纯Python和PyTorch图像质量评估工具箱

IQA-PyTorch是一款基于纯Python和PyTorch的图像质量评估工具箱,支持多种主流全参考和无参考评估指标。通过GPU加速,评估速度优于Matlab实现,用户可通过命令行或代码进行图像质量评估。该工具箱还支持作为损失函数使用,提供便捷的基准数据集下载和详细文档,适用于评估各种场景。定期更新及多种预训练模型让它成为图像质量评估的理想选择。详情请查阅文档和示例代码。

lightning-uq-box - 神经网络不确定性量化开源工具库
GithubLightning-UQ-BoxPyTorch不确定性量化开源项目机器学习深度学习
Lightning-UQ-Box是基于PyTorch的开源库,为神经网络提供多种不确定性量化技术。该库实现了多种UQ方法,支持不同架构和理论基础,便于在数据集上比较方法效果。它简化了UQ在工作流中的应用,降低了使用门槛,有助于促进UQ方法的比较和开发,并注重实验的可重现性。
mmdetection - MMDetection:基于PyTorch的高效目标检测工具箱
GithubMM-Grounding-DINOMMDetectionOpenMMLabPyTorchRTMDet开源项目
MMDetection是一款专为目标检测、实例分割和全景分割任务设计的工具箱,采用模块化设计,支持多种检测任务,具备高效GPU运算能力。其性能与其他顶级代码库相媲美,且不断保持前沿。结合COCO挑战赛冠军经验,MMDetection提供先进的检测结果,并与MMEngine和MMCV无缝整合,进一步提升研究和应用效果。最新的RTMDet模型在参数-准确率优化及实时实例分割和旋转目标检测上表现出色。
pytorch-grad-cam - 全面解析AI在计算机视觉领域的可解释性技术
GithubGrad-CAMPyTorch可视化开源项目模型解释热门计算机视觉
pytorch-grad-cam是一个先进的AI解释性工具包,适用于PyTorch平台,提供了多种像素归因方法,支持常见的CNN和视觉变换器模型。这个包不仅可以用于生产中对模型预测的诊断,也适用于模型开发阶段。通过包括平滑方法和高性能的批处理支持,pytorch-grad-cam能够在多种场景下提供详尽可靠的视觉解释,助力研究人员和开发者深入理解模型决策过程。
vit-pytorch - 通过PyTorch实现多种视觉Transformer变体
GithubPytorchVision Transformer卷积神经网络图像分类开源项目深度学习
本项目展示了如何在PyTorch中实现和使用视觉Transformer(ViT)模型,包括Simple ViT、NaViT、Distillation、Deep ViT等多种变体。利用基于Transformer架构的简单编码器,本项目在视觉分类任务中达到了先进水平。用户可以通过pip进行安装,并参考提供的代码示例进行模型加载和预测。项目还支持高级功能如知识蒸馏、变分图像尺寸训练和深度模型优化,适用于多种视觉任务场景。
imagen-pytorch - 文本到图像合成技术,基于Pytorch的Imagen实现
GithubImagenPytorchT5模型开源项目文本到图像神经网络
Google的Imagen是一种基于Pytorch实现的文本到图像神经网络,被视为此领域的新技术标杆。它采用简化的架构和优化的设计,例如级联DDPM、动态剪辑和内存高效的Unet设计。该项目在从文本转换成图像的合成过程中,表现出了相比DALL-E2的显著优势,为研究人员和开发者提供了实用的图像生成工具。
insightface - 综合人脸分析开源工具库
GithubInsightFace人脸对齐人脸检测人脸识别开源项目深度学习
InsightFace是一个综合人脸分析开源工具库,基于PyTorch和MXNet实现。它涵盖人脸识别、检测和对齐等多个任务,提供高效算法、训练数据和网络设计。支持ArcFace、RetinaFace等方法,并包含多种网络骨干。该项目还提供评估流程和预训练模型,适用于人脸分析的研究与应用。
pytracking - 基于PyTorch的开源视觉目标跟踪和视频对象分割框架
GithubPyTorch开源项目深度学习视觉目标跟踪视频目标分割计算机视觉
PyTracking是基于PyTorch的开源视觉目标跟踪和视频对象分割框架。它实现了多个先进的跟踪算法,如TaMOs、RTS和ToMP,并提供完整的训练代码和预训练模型。该框架包含用于实现和评估视觉跟踪器的库,涵盖常用数据集、性能分析脚本和通用构建模块。其LTR训练框架支持多种跟踪网络的训练,提供丰富的数据集和功能。
pytorch-image-models - 全面的PyTorch图像模型集合
GithubPyTorch图像模型开源项目深度学习神经网络计算机视觉
pytorch-image-models是一个综合性PyTorch图像模型库,提供最新计算机视觉模型、预训练权重和训练脚本。库中包含CNN和Transformer等多种架构,支持迁移学习和特征提取。项目不断更新,近期新增MobileNetV4模型并优化现有模型性能。该库为计算机视觉研究和开发提供了丰富的工具和资源。
pytorch-toolbelt - 专为PyTorch设计的Python库,提供高效研发和Kaggle竞赛所需的工具集
GithubPyTorch乌克兰俄罗斯开源项目战争深度学习
pytorch-toolbelt是一款专为PyTorch设计的Python库,提供高效研发和Kaggle竞赛所需的工具集。其功能包括灵活的编码器-解码器架构、多种模块(如CoordConv、SCSE、Hypercolumn等)、GPU友好的测试时增强(TTA)、大图像推理及常用方法,支持多种损失函数,并与Catalyst库无缝集成。这些工具旨在简化模型构建、优化和推理过程。
deep_sort_pytorch - 使用PyTorch实现的Deep Sort多目标追踪算法
Deep SortGithubMask RCNNPyTorchYOLOv3YOLOv5开源项目
本项目实现了基于PyTorch的Deep Sort多目标追踪算法,结合CNN模型进行特征提取,并采用YOLOv3和YOLOv5等先进检测器代替原始的FasterRCNN。项目还支持多GPU训练和多类别目标追踪,并引入了Mask RCNN实例分割模型。用户可以使用Python和PyTorch轻松启动和自定义项目,适用于行人再识别等任务。详细的更新日志和使用指南使其对机器学习及计算机视觉爱好者和研究人员尤为有用。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号