Project Icon

pytorch-image-models

全面的PyTorch图像模型集合

pytorch-image-models是一个综合性PyTorch图像模型库,提供最新计算机视觉模型、预训练权重和训练脚本。库中包含CNN和Transformer等多种架构,支持迁移学习和特征提取。项目不断更新,近期新增MobileNetV4模型并优化现有模型性能。该库为计算机视觉研究和开发提供了丰富的工具和资源。

PyTorch Image Models

What's New

❗Updates after Oct 10, 2022 are available in version >= 0.9❗

  • Many changes since the last 0.6.x stable releases. They were previewed in 0.8.x dev releases but not everyone transitioned.
  • timm.models.layers moved to timm.layers:
    • from timm.models.layers import name will still work via deprecation mapping (but please transition to timm.layers).
    • import timm.models.layers.module or from timm.models.layers.module import name needs to be changed now.
  • Builder, helper, non-model modules in timm.models have a _ prefix added, ie timm.models.helpers -> timm.models._helpers, there are temporary deprecation mapping files but those will be removed.
  • All models now support architecture.pretrained_tag naming (ex resnet50.rsb_a1).
    • The pretrained_tag is the specific weight variant (different head) for the architecture.
    • Using only architecture defaults to the first weights in the default_cfgs for that model architecture.
    • In adding pretrained tags, many model names that existed to differentiate were renamed to use the tag (ex: vit_base_patch16_224_in21k -> vit_base_patch16_224.augreg_in21k). There are deprecation mappings for these.
  • A number of models had their checkpoints remaped to match architecture changes needed to better support features_only=True, there are checkpoint_filter_fn methods in any model module that was remapped. These can be passed to timm.models.load_checkpoint(..., filter_fn=timm.models.swin_transformer_v2.checkpoint_filter_fn) to remap your existing checkpoint.
  • The Hugging Face Hub (https://huggingface.co/timm) is now the primary source for timm weights. Model cards include link to papers, original source, license.
  • Previous 0.6.x can be cloned from 0.6.x branch or installed via pip with version.

Aug 8, 2024

July 28, 2024

  • Add mobilenet_edgetpu_v2_m weights w/ ra4 mnv4-small based recipe. 80.1% top-1 @ 224 and 80.7 @ 256.
  • Release 1.0.8

July 26, 2024

  • More MobileNet-v4 weights, ImageNet-12k pretrain w/ fine-tunes, and anti-aliased ConvLarge models
modeltop1top1_errtop5top5_errparam_countimg_size
mobilenetv4_conv_aa_large.e230_r448_in12k_ft_in1k84.9915.0197.2942.70632.59544
mobilenetv4_conv_aa_large.e230_r384_in12k_ft_in1k84.77215.22897.3442.65632.59480
mobilenetv4_conv_aa_large.e230_r448_in12k_ft_in1k84.6415.3697.1142.88632.59448
mobilenetv4_conv_aa_large.e230_r384_in12k_ft_in1k84.31415.68697.1022.89832.59384
mobilenetv4_conv_aa_large.e600_r384_in1k83.82416.17696.7343.26632.59480
mobilenetv4_conv_aa_large.e600_r384_in1k83.24416.75696.3923.60832.59384
mobilenetv4_hybrid_medium.e200_r256_in12k_ft_in1k82.9917.0196.673.3311.07320
mobilenetv4_hybrid_medium.e200_r256_in12k_ft_in1k82.36417.63696.2563.74411.07256
modeltop1top1_errtop5top5_errparam_countimg_size
efficientnet_b0.ra4_e3600_r224_in1k79.36420.63694.7545.2465.29256
efficientnet_b0.ra4_e3600_r224_in1k78.58421.41694.3385.6625.29224
mobilenetv1_100h.ra4_e3600_r224_in1k76.59623.40493.2726.7285.28256
mobilenetv1_100.ra4_e3600_r224_in1k76.09423.90693.0046.9964.23256
mobilenetv1_100h.ra4_e3600_r224_in1k75.66224.33892.5047.4965.28224
mobilenetv1_100.ra4_e3600_r224_in1k75.38224.61892.3127.6884.23224
  • Prototype of set_input_size() added to vit and swin v1/v2 models to allow changing image size, patch size, window size after model creation.
  • Improved support in swin for different size handling, in addition to set_input_size, always_partition and strict_img_size args have been added to __init__ to allow more flexible input size constraints
  • Fix out of order indices info for intermediate 'Getter' feature wrapper, check out or range indices for same.
  • Add several tiny < .5M param models for testing that are actually trained on ImageNet-1k
modeltop1top1_errtop5top5_errparam_countimg_sizecrop_pct
test_efficientnet.r160_in1k47.15652.84471.72628.2740.361921.0
test_byobnet.r160_in1k46.69853.30271.67428.3260.461921.0
test_efficientnet.r160_in1k46.42653.57470.92829.0720.361600.875
test_byobnet.r160_in1k45.37854.62270.57229.4280.461600.875
test_vit.r160_in1k42.058.068.66431.3360.371921.0
test_vit.r160_in1k40.82259.17867.21232.7880.371600.875
  • Fix vit reg token init, thanks Promisery
  • Other misc fixes

June 24, 2024

  • 3 more MobileNetV4 hyrid weights with different MQA weight init scheme
modeltop1top1_errtop5top5_errparam_countimg_size
mobilenetv4_hybrid_large.ix_e600_r384_in1k84.35615.64496.8923.10837.76448
mobilenetv4_hybrid_large.ix_e600_r384_in1k83.99016.01096.7023.29837.76384
mobilenetv4_hybrid_medium.ix_e550_r384_in1k83.39416.60696.7603.24011.07448
mobilenetv4_hybrid_medium.ix_e550_r384_in1k82.96817.03296.4743.52611.07384
mobilenetv4_hybrid_medium.ix_e550_r256_in1k82.49217.50896.2783.72211.07320
mobilenetv4_hybrid_medium.ix_e550_r256_in1k81.44618.55495.7044.29611.07256
  • florence2 weight loading in DaViT model

June 12, 2024

  • MobileNetV4 models and initial set of timm trained weights added:
modeltop1top1_errtop5top5_errparam_countimg_size
mobilenetv4_hybrid_large.e600_r384_in1k84.26615.73496.9363.06437.76448
mobilenetv4_hybrid_large.e600_r384_in1k83.80016.20096.7703.23037.76384
mobilenetv4_conv_large.e600_r384_in1k83.39216.60896.6223.37832.59448
mobilenetv4_conv_large.e600_r384_in1k82.95217.04896.2663.73432.59384
mobilenetv4_conv_large.e500_r256_in1k82.67417.32696.313.6932.59320
mobilenetv4_conv_large.e500_r256_in1k81.86218.13895.694.3132.59256
mobilenetv4_hybrid_medium.e500_r224_in1k81.27618.72495.7424.25811.07256
mobilenetv4_conv_medium.e500_r256_in1k80.85819.14295.7684.2329.72320
mobilenetv4_hybrid_medium.e500_r224_in1k80.44219.55895.384.6211.07224
mobilenetv4_conv_blur_medium.e500_r224_in1k80.14219.85895.2984.7029.72256
mobilenetv4_conv_medium.e500_r256_in1k79.92820.07295.1844.8169.72256
mobilenetv4_conv_medium.e500_r224_in1k79.80820.19295.1864.8149.72256
mobilenetv4_conv_blur_medium.e500_r224_in1k79.43820.56294.9325.0689.72224
mobilenetv4_conv_medium.e500_r224_in1k79.09420.90694.775.239.72224
mobilenetv4_conv_small.e2400_r224_in1k74.61625.38492.0727.9283.77256
mobilenetv4_conv_small.e1200_r224_in1k74.29225.70892.1167.8843.77256
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号