Project Icon

pumpkin-book

西瓜书公式详解与机器学习理论补充

南瓜书是一个开源项目,对周志华《机器学习》(西瓜书)中的复杂公式进行解析和补充。项目提供详细的公式推导过程,帮助读者理解机器学习核心概念。包含在线阅读、PDF下载和视频教程,适合深入学习机器学习理论的读者。由数学基础扎实的贡献者编写,旨在提升机器学习学习者的理论水平。

key-book - 深入理解机器学习理论的关键概念与应用
DatawhaleGithubKey-book参考笔记开源项目机器学习机器学习理论导引
《钥匙书》是《机器学习理论导引》的补充读物,帮助读者理解机器学习中的七大关键概念:可学性、复杂度、泛化界、稳定性、一致性、收敛率和遗憾界。通过详细的证明补充、案例解析和概念扩展,解决读者在学习中遇到的难题,提供实时更新的在线阅读资源,非常适合深入研究机器学习理论的读者。
python-machine-learning-book-2nd-edition - Python机器学习与深度学习实用指南
GithubPackt PublishingPython Machine Learning开源项目数据科学机器学习深度学习
本书详细介绍机器学习和深度学习的核心概念,教你使用Python及其主要库(如Scikit-Learn和TensorFlow)进行数据处理、分类、回归和模型优化。书中包含丰富的示例代码和Jupyter笔记本,帮助读者理解复杂的数学理论和实现步骤,是数据科学家和工程师学习和提升机器学习技能的理想选择。
DeepLearning - 深度学习概念与技术详解
Aaron CourvilleDeep LearningGithubIan GoodfellowYoshua Bengio开源项目深度学习
本项目解析《深度学习》一书,通过数学推导和Python代码实现,涵盖线性代数、概率论、优化算法等基础知识,以及卷积网络、序列建模等深度学习技术。适用于深度学习初学者和从业者,提供详尽的理论和源码实现,帮助掌握深度学习算法。
python-machine-learning-book-3rd-edition - Python与机器学习代码实例——从基础到高级应用
GithubPython Machine LearningTensorFlowscikit-learn开源项目数据处理机器学习
《Python Machine Learning》第三版全面覆盖了数据预处理、分类、回归、深度学习和强化学习等机器学习领域的核心概念。书中提供了Scikit-Learn和TensorFlow的代码示例,帮助读者掌握模型评估、超参数优化和集成学习等技术。本书适合初学者和进阶用户,通过代码仓库可以获得丰富的实践经验。出版信息:Packt Publishing, 2019年12月12日,ISBN-13: 978-1789955750。
Machine-Learning-Notes - 机器学习从入门到精通的全面笔记
Github人工智能学习开源项目机器学习笔记计算机科学
Machine-Learning-Notes 是一个机器学习领域的学习资源库,提供从基础到高级的笔记。项目涵盖算法、模型和实践应用,适合不同水平的学习者。资料全面且定期更新,采用循序渐进的学习方法,有助于系统掌握机器学习知识。其独特的结构化组织使学习者能够轻松找到所需资源,从而更有效地提升技能。
practical-machine-learning-with-python - 实际应用中的机器学习与深度学习指南
GithubPractical Machine Learning with PythonPython开源项目数据科学机器学习深度学习
通过结构化的三层方法和实际案例,本书帮助读者掌握机器学习和深度学习技能。内容涵盖scikit-learn、pandas、tensorflow等工具,提供数据处理、特征工程、建模和部署的详细指导,以及多个跨行业的案例研究,支持独立完成端到端的机器学习项目。
grape-book - 图深度学习入门指南 理论与实践并重
DGLGithubNetworkX图深度学习图神经网络开源项目葡萄书
本教程基于京东团队、密西根州立大学和斯坦福大学CS224W课程内容,提供图深度学习从入门到应用的全面指导。涵盖图理论基础、深度学习基础、经典图神经网络模型,并结合NetworkX、DGL和PyG框架的实践代码,助力读者系统掌握图深度学习知识。
Statistical-Learning-Method_Code - 《统计学习方法》算法实现与详细注释
Github代码实现开源项目无监督学习机器学习监督学习统计学习方法
本项目实现了《统计学习方法》一书中的机器学习算法,涵盖监督学习和无监督学习方法。代码采用Python编写,每行均有详细注释,关键部分标注公式出处。项目还提供相关博客链接,旨在帮助学习者深入理解算法原理,适合机器学习入门者参考学习。
machine-learning-book - 深入使用PyTorch和Scikit-Learn的机器学习指南
GithubMachine LearningPackt PublishingPyTorchScikit-LearnSebastian Raschka开源项目
该书介绍了如何使用PyTorch和Scikit-Learn进行机器学习,内容包含从数据预处理到高级深度学习模型的实现。主要涵盖分类、回归、聚类、神经网络、自然语言处理、生成对抗网络及强化学习等主题,通过实用的代码示例和实际应用帮助读者掌握机器学习技术。无论是初学者还是有经验的开发者,都可以将其作为理解和应用机器学习的重要参考资料。
Book-Mathematical-Foundation-of-Reinforcement-Learning - 强化学习数学基础入门指南
GitHubGithub开源项目强化学习教学视频数学基础算法
该书提供强化学习领域的数学友好入门指南,涵盖基本概念到经典算法。通过精心设计的数学讲解和示例,帮助读者理解核心思想。配套中英文视频课程,适合本科生、研究生、研究人员和从业者。基于作者多年教学经验,旨在引导读者进入强化学习领域。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

稿定AI

稿定设计 是一个多功能的在线设计和创意平台,提供广泛的设计工具和资源,以满足不同用户的需求。从专业的图形设计师到普通用户,无论是进行图片处理、智能抠图、H5页面制作还是视频剪辑,稿定设计都能提供简单、高效的解决方案。该平台以其用户友好的界面和强大的功能集合,帮助用户轻松实现创意设计。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号